1,569 research outputs found

    Parametric modeling of photometric signals

    Get PDF
    This paper studies a new model for photometric signals under high flux assumption. Photometric signals are modeled by Gaussian autoregressive processes having the same mean and variance denoted Constraint Gaussian Autoregressive Processes (CGARP's). The estimation of the CGARP parameters is discussed. The CramĂ©r Rao lower bounds for these parameters are studied and compared to the estimator mean square errors. The CGARP is intended to model the signal received by a satellite designed for extrasolar planets detection. A transit of a planet in front of a star results in an abrupt change in the mean and variance of the CGARP. The Neyman–Pearson detector for this changepoint detection problem is derived when the abrupt change parameters are known. Closed form expressions for the Receiver Operating Characteristics (ROC) are provided. The Neyman–Pearson detector combined with the maximum likelihood estimator for CGARP parameters allows to study the generalized likelihood ratio detector. ROC curves are then determined using computer simulations

    Cramer–Rao lower bounds for change points in additive and multiplicative noise

    Get PDF
    The paper addresses the problem of determining the Cramer–Rao lower bounds (CRLBs) for noise and change-point parameters, for steplike signals corrupted by multiplicative and/or additive white noise. Closed-form expressions for the signal and noise CRLBs are first derived for an ideal step with a known change point. For an unknown change-point, the noise-free signal is modeled by a sigmoidal function parametrized by location and step rise parameters. The noise and step change CRLBs corresponding to this model are shown to be well approximated by the more tractable expressions derived for a known change-point. The paper also shows that the step location parameter is asymptotically decoupled from the other parameters, which allows us to derive simple CRLBs for the step location. These bounds are then compared with the corresponding mean square errors of the maximum likelihood estimators in the pure multiplicative case. The comparison illustrates convergence and efficiency of the ML estimator. An extension to colored multiplicative noise is also discussed

    Distributed image reconstruction for very large arrays in radio astronomy

    Get PDF
    Current and future radio interferometric arrays such as LOFAR and SKA are characterized by a paradox. Their large number of receptors (up to millions) allow theoretically unprecedented high imaging resolution. In the same time, the ultra massive amounts of samples makes the data transfer and computational loads (correlation and calibration) order of magnitudes too high to allow any currently existing image reconstruction algorithm to achieve, or even approach, the theoretical resolution. We investigate here decentralized and distributed image reconstruction strategies which select, transfer and process only a fraction of the total data. The loss in MSE incurred by the proposed approach is evaluated theoretically and numerically on simple test cases.Comment: Sensor Array and Multichannel Signal Processing Workshop (SAM), 2014 IEEE 8th, Jun 2014, Coruna, Spain. 201

    Bivariate Gamma Distributions for Image Registration and Change Detection

    Get PDF
    This paper evaluates the potential interest of using bivariate gamma distributions for image registration and change detection. The first part of this paper studies estimators for the parameters of bivariate gamma distributions based on the maximum likelihood principle and the method of moments. The performance of both methods are compared in terms of estimated mean square errors and theoretical asymptotic variances. The mutual information is a classical similarity measure which can be used for image registration or change detection. The second part of the paper studies some properties of the mutual information for bivariate Gamma distributions. Image registration and change detection techniques based on bivariate gamma distributions are finally investigated. Simulation results conducted on synthetic and real data are very encouraging. Bivariate gamma distributions are good candidates allowing us to develop new image registration algorithms and new change detectors

    Proximal Multitask Learning over Networks with Sparsity-inducing Coregularization

    Full text link
    In this work, we consider multitask learning problems where clusters of nodes are interested in estimating their own parameter vector. Cooperation among clusters is beneficial when the optimal models of adjacent clusters have a good number of similar entries. We propose a fully distributed algorithm for solving this problem. The approach relies on minimizing a global mean-square error criterion regularized by non-differentiable terms to promote cooperation among neighboring clusters. A general diffusion forward-backward splitting strategy is introduced. Then, it is specialized to the case of sparsity promoting regularizers. A closed-form expression for the proximal operator of a weighted sum of ℓ1\ell_1-norms is derived to achieve higher efficiency. We also provide conditions on the step-sizes that ensure convergence of the algorithm in the mean and mean-square error sense. Simulations are conducted to illustrate the effectiveness of the strategy

    Distributed Deblurring of Large Images of Wide Field-Of-View

    Full text link
    Image deblurring is an economic way to reduce certain degradations (blur and noise) in acquired images. Thus, it has become essential tool in high resolution imaging in many applications, e.g., astronomy, microscopy or computational photography. In applications such as astronomy and satellite imaging, the size of acquired images can be extremely large (up to gigapixels) covering wide field-of-view suffering from shift-variant blur. Most of the existing image deblurring techniques are designed and implemented to work efficiently on centralized computing system having multiple processors and a shared memory. Thus, the largest image that can be handle is limited by the size of the physical memory available on the system. In this paper, we propose a distributed nonblind image deblurring algorithm in which several connected processing nodes (with reasonable computational resources) process simultaneously different portions of a large image while maintaining certain coherency among them to finally obtain a single crisp image. Unlike the existing centralized techniques, image deblurring in distributed fashion raises several issues. To tackle these issues, we consider certain approximations that trade-offs between the quality of deblurred image and the computational resources required to achieve it. The experimental results show that our algorithm produces the similar quality of images as the existing centralized techniques while allowing distribution, and thus being cost effective for extremely large images.Comment: 16 pages, 10 figures, submitted to IEEE Trans. on Image Processin

    Large Scale 3D Image Reconstruction in Optical Interferometry

    Full text link
    Astronomical optical interferometers (OI) sample the Fourier transform of the intensity distribution of a source at the observation wavelength. Because of rapid atmospheric perturbations, the phases of the complex Fourier samples (visibilities) cannot be directly exploited , and instead linear relationships between the phases are used (phase closures and differential phases). Consequently, specific image reconstruction methods have been devised in the last few decades. Modern polychromatic OI instruments are now paving the way to multiwavelength imaging. This paper presents the derivation of a spatio-spectral ("3D") image reconstruction algorithm called PAINTER (Polychromatic opticAl INTErferometric Reconstruction software). The algorithm is able to solve large scale problems. It relies on an iterative process, which alternates estimation of polychromatic images and of complex visibilities. The complex visibilities are not only estimated from squared moduli and closure phases, but also from differential phases, which help to better constrain the polychromatic reconstruction. Simulations on synthetic data illustrate the efficiency of the algorithm.Comment: EUSIPCO, Aug 2015, NICE, Franc
    • 

    corecore