1,472 research outputs found

    Greater than the parts: a review of the information decomposition approach to causal emergence.

    Get PDF
    Emergence is a profound subject that straddles many scientific disciplines, including the formation of galaxies and how consciousness arises from the collective activity of neurons. Despite the broad interest that exists on this concept, the study of emergence has suffered from a lack of formalisms that could be used to guide discussions and advance theories. Here, we summarize, elaborate on, and extend a recent formal theory of causal emergence based on information decomposition, which is quantifiable and amenable to empirical testing. This theory relates emergence with information about a system's temporal evolution that cannot be obtained from the parts of the system separately. This article provides an accessible but rigorous introduction to the framework, discussing the merits of the approach in various scenarios of interest. We also discuss several interpretation issues and potential misunderstandings, while highlighting the distinctive benefits of this formalism. This article is part of the theme issue 'Emergent phenomena in complex physical and socio-technical systems: from cells to societies'

    Spectrally and temporally resolved estimation of neural signal diversity

    Get PDF
    Quantifying the complexity of neural activity has provided fundamental insights into cognition, consciousness, and clinical conditions. However, the most widely used approach to estimate the complexity of neural dynamics, Lempel-Ziv complexity (LZ), has fundamental limitations that substantially restrict its domain of applicability. In this article we leverage the information-theoretic foundations of LZ to overcome these limitations by introducing a complexity estimator based on state-space models — which we dub Complexity via State-space Entropy Rate (CSER). While having a performance equivalent to LZ in discriminating states of consciousness, CSER boasts two crucial advantages: 1) CSER offers a principled decomposition into spectral components, which allows us to rigorously investigate the relationship between complexity and spectral power; and 2) CSER provides a temporal resolution two orders of magnitude better than LZ, which allows complexity analyses of e.g. event-locked neural signals. As a proof of principle, we use MEG, EEG and ECoG datasets of humans and monkeys to show that CSER identifies the gamma band as the main driver of complexity changes across states of consciousness; and reveals early entropy increases that precede the standard ERP in an auditory mismatch negativity paradigm by approximately 20ms. Overall, by overcoming the main limitations of LZ and substantially extending its range of applicability, CSER opens the door to novel investigations on the fine-grained spectral and temporal structure of the signal complexity associated with cognitive processes and conscious states

    Using the local density approximation and the LYP, BLYP, and B3LYP functionals within Reference--State One--Particle Density--Matrix Theory

    Full text link
    For closed-shell systems, the local density approximation (LDA) and the LYP, BLYP, and B3LYP functionals are shown to be compatible with reference-state one-particle density-matrix theory, where this recently introduced formalism is based on Brueckner-orbital theory and an energy functional that includes exact exchange and a non-universal correlation-energy functional. The method is demonstrated to reduce to a density functional theory when the exchange-correlation energy-functional has a simplified form, i.e., its integrand contains only the coordinates of two electron, say r1 and r2, and it has a Dirac delta function -- delta(r1 - r2) -- as a factor. Since Brueckner and Hartree--Fock orbitals are often very similar, any local exchange functional that works well with Hartree--Fock theory is a reasonable approximation with reference-state one-particle density-matrix theory. The LDA approximation is also a reasonable approximation. However, the Colle--Salvetti correlation-energy functional, and the LYP variant, are not ideal for the method, since these are universal functionals. Nevertheless, they appear to provide reasonable approximations. The B3LYP functional is derived using a linear combination of two functionals: One is the BLYP functional; the other uses exact exchange and a correlation-energy functional from the LDA.Comment: 26 Pages, 0 figures, RevTeX 4, Submitted to Mol. Phy

    Psychedelics and schizophrenia: Distinct alterations to Bayesian inference

    Get PDF
    Schizophrenia and states induced by certain psychotomimetic drugs may share some physiological and phenomenological properties, but they differ in fundamental ways: one is a crippling chronic mental disease, while the others are temporary, pharmacologically-induced states presently being explored as treatments for mental illnesses. Building towards a deeper understanding of these different alterations of normal consciousness, here we compare the changes in neural dynamics induced by LSD and ketamine (in healthy volunteers) against those associated with schizophrenia, as observed in resting-state M/EEG recordings. While both conditions exhibit increased neural signal diversity, our findings reveal that this is accompanied by an increased transfer entropy from the front to the back of the brain in schizophrenia, versus an overall reduction under the two drugs. Furthermore, we show that these effects can be reproduced via different alterations of standard Bayesian inference applied on a computational model based on the predictive processing framework. In particular, the effects observed under the drugs are modelled as a reduction of the precision of the priors, while the effects of schizophrenia correspond to an increased precision of sensory information. These findings shed new light on the similarities and differences between schizophrenia and two psychotomimetic drug states, and have potential implications for the study of consciousness and future mental health treatments

    Patient Survey of current water Intake practices in autosomal dominant Polycystic kidney disease: the SIPs survey

    Get PDF
    Background: Autosomal dominant polycystic kidney disease (ADPKD) affects 12.5 million worldwide. Vasopressin drives cysts growth and in animal models can be suppressed through high water intake. A randomized controlled trial of ‘high’ versus ‘standard’ water intake in ADPKD is essential to determine if this intervention is beneficial. We conducted an ADPKD patient survey to gain an understanding of current fluid intake practices and the design challenges of a randomized water intake trial. Methods: In collaboration with the PKD Charity, we developed and distributed an online survey to ADPKD patients over age 16 years and not on renal replacement therapy. Results: Of the 2377 invited, 89 ADPKD patients completed the Survey of current water Intake practices in autosomal dominant Polycystic kidney disease (SIPs) online questionnaire. Most were female (65, 73%) and white (84, 94%), with a median age group of 45–49 years. The risk of contamination between treatment arms was highlighted by the survey as the majority (70, 79%) routinely discussed ADPKD management with family despite only 17% sharing the same household. More participants reported drinking beyond thirst (65, 73%) than those actually indicating a daily fluid intake of >2 L (54, 61%). This discrepancy emphasizes inaccuracies of fluid intake estimates and the requirement for objective methods of measuring water intake. Overall, only 51% believed high water intake was beneficial, while 91% were willing to participate in research evaluating this. Conclusion: ADPKD poses unique design challenges to a randomized water intake trial. However, the trial is likely to be supported by the ADPKD community and could impact significantly on PKD management and associated healthcare costs.We thank the PKD Charity for their help with the survey. R.E.-D. is supported by the PKD Charity and the Addenbrooke’s Charitable Trust. T.F.H. and F.E.K.F. are supported by the National Institute for Health Research (NIHR) and the Cambridge Biomedical Research Centre. This work was also supported by the British Renal Society and the British Kidney Patient Association

    Homicide in Canada and the crime drop

    Get PDF
    In contrast to the Canadian crime drop of the 1990s, homicide appeared as an anomaly with a peak in the 1970s. Yet previous studies tend to refer only to completed homicides, and here we also include attempts. The resulting trend is remarkably similar to that in Canadian property crime for five decades. This seems unlikely to be a coincidence and we speculate about a causal link
    • …
    corecore