81 research outputs found
The Physics of Star Cluster Formation and Evolution
© 2020 Springer-Verlag. The final publication is available at Springer via https://doi.org/10.1007/s11214-020-00689-4.Star clusters form in dense, hierarchically collapsing gas clouds. Bulk kinetic energy is transformed to turbulence with stars forming from cores fed by filaments. In the most compact regions, stellar feedback is least effective in removing the gas and stars may form very efficiently. These are also the regions where, in high-mass clusters, ejecta from some kind of high-mass stars are effectively captured during the formation phase of some of the low mass stars and effectively channeled into the latter to form multiple populations. Star formation epochs in star clusters are generally set by gas flows that determine the abundance of gas in the cluster. We argue that there is likely only one star formation epoch after which clusters remain essentially clear of gas by cluster winds. Collisional dynamics is important in this phase leading to core collapse, expansion and eventual dispersion of every cluster. We review recent developments in the field with a focus on theoretical work.Peer reviewe
(33)S MAS NMR of a disordered sulfur-doped silicate: signal enhancement via RAPT, QCPMG and adiabatic pulses
Three different signal enhancement techniques have been applied to (33)S magic-angle spinning nuclear magnetic resonance (MAS NMR) of a disordered silicate containing 1.15 wt% (33)S. Partial saturation of the satellite transitions was achieved using a rotor-assisted population transfer (RAPT) pulse sequence, resulting in a signal enhancement of 1.63, albeit with a slight distortion of the line shape due to selective excitation. Adiabatic inversion of the satellite transitions by various amplitude-and frequency-modulated pulse shapes (such as hyperbolic secant and wideband uniform-rate smooth truncation) was also attempted, resulting in a signal enhancement of up to 1.85, with no apparent line shape distortion. Quadrupolar Carr-Purcell-Meiboom-Gill (QCPMG) and RAPT-QCPMG sequences were also used, both of which yielded spikelet spectra that accurately reflected the MAS line shape with a greatly improved signal-to-noise ratio. It is hoped that this study demonstrates that (33)S solid-state MAS NMR is now feasible even on disordered, low-sulfur-content systems
- …