20 research outputs found

    ASMs and Operational Algorithmic Completeness of Lambda Calculus

    Get PDF
    We show that lambda calculus is a computation model which can step by step simulate any sequential deterministic algorithm for any computable function over integers or words or any datatype. More formally, given an algorithm above a family of computable functions (taken as primitive tools, i.e., kind of oracle functions for the algorithm), for every constant K big enough, each computation step of the algorithm can be simulated by exactly K successive reductions in a natural extension of lambda calculus with constants for functions in the above considered family. The proof is based on a fixed point technique in lambda calculus and on Gurevich sequential Thesis which allows to identify sequential deterministic algorithms with Abstract State Machines. This extends to algorithms for partial computable functions in such a way that finite computations ending with exceptions are associated to finite reductions leading to terms with a particular very simple feature.Comment: 37 page

    Language, Life, Limits

    Get PDF
    In the context of second-order polynomial-time computability, we prove that there is no general function space construction. We proceed to identify restrictions on the domain or the codomain that do provide a function space with polynomial-time function evaluation containing all polynomial-time computable functions of that type. As side results we show that a polynomial-time counterpart to admissibility of a representation is not a suitable criterion for natural representations, and that the Weihrauch degrees embed into the polynomial-time Weihrauch degrees

    One-tape, off-line Turing machine computations

    No full text

    Formalizing Turing Machines

    No full text
    Abstract. We discuss the formalization, in the Matita Theorem Prover, of a few, basic results on Turing Machines, up to the existence of a (certified) Universal Machine. The work is meant to be a preliminary step towards the creation of a formal repository in Complexity Theory, and is a small piece in our Reverse Complexity program, aiming to a comfortable, machine independent axiomatization of the field.
    corecore