870 research outputs found

    Lattice dependence of saturated ferromagnetism in the Hubbard model

    Full text link
    We investigate the instability of the saturated ferromagnetic ground state (Nagaoka state) in the Hubbard model on various lattices in dimensions d=2 and d=3. A variational resolvent approach is developed for the Nagaoka instability both for U = infinity and for U < infinity which can easily be evaluated in the thermodynamic limit on all common lattices. Our results significantly improve former variational bounds for a possible Nagaoka regime in the ground state phase diagram of the Hubbard model. We show that a pronounced particle-hole asymmetry in the density of states and a diverging density of states at the lower band edge are the most important features in order to stabilize Nagaoka ferromagnetism, particularly in the low density limit.Comment: Revtex, 18 pages with 18 figures, 7 pages appendices, section on bcc lattice adde

    Non-thermal Origin of the EUV and Soft X-rays from the Coma Cluster - Cosmic Rays in Equipartition with the Thermal Medium

    Get PDF
    The role of cosmic rays (CR) in the formation and evolution of clusters of galaxies has been much debated. It may well be related to other fundamental questions, such as the mechanism which heats and virializes the intracluster medium (ICM), and the frequency at which the ICM is shocked. There is now compelling evidence both from the cluster soft excess (CSE) and the `hard-tail' emissions at energies above 10 keV, that many clusters are luminous sources of inverse-Compton (IC) emission. This is the first direct measurement of cluster CR: the technique is free from our uncertainties in the ICM magnetic field, and is not limited to the small subset of clusters which exhibit radio halos. The CSE emitting electrons fall within a crucial decade of energy where they have the least spectral evolution, and where most of the CR pressure resides. However their survival times do not date them back to the relic CR population. By using the CSE data of the Coma cluster, we demonstrate that the CR are energetically as important as the thermal ICM: the two components are in pressure equiparition. Thus, contrary to previous expectations, CR are a dominant component of the ICM, and their origin and effects should be explored. The best-fit CR spectral index is in agreement with the Galactic value.Comment: ApJ accepted; 10 pages LaTeX; 2 figures and 1 table in PostScrip

    A scene model of exosolar systems for use in planetary detection and characterisation simulations

    Full text link
    Instrumental projects that will improve the direct optical finding and characterisation of exoplanets have advanced sufficiently to trigger organized investigation and development of corresponding signal processing algorithms. The first step is the availability of field-of-view (FOV) models. These can then be submitted to various instrumental models, which in turn produce simulated data, enabling the testing of processing algorithms. We aim to set the specifications of a physical model for typical FOVs of these instruments. The dynamic in resolution and flux between the various sources present in such a FOV imposes a multiscale, independent layer approach. From review of current literature and through extrapolations from currently available data and models, we derive the features of each source-type in the field of view likely to pass the instrumental filter at exo-Earth level. Stellar limb darkening is shown to cause bias in leakage calibration if unaccounted for. Occurrence of perturbing background stars or galaxies in the typical FOV is unlikely. We extract galactic interstellar medium background emissions for current target lists. Galactic background can be considered uniform over the FOV, and it should show no significant drift with parallax. Our model specifications have been embedded into a Java simulator, soon to be made open-source. We have also designed an associated FITS input/output format standard that we present here.Comment: 9 pages (+5 of appendices), 7 figures, accepted for publication in Astronomy & Astrophysic

    Investigation of emitter homogeneity on laser doped emitters

    Get PDF
    The selective emitter formation by laser doping is a well known process to increase the efficiency of silicon solar cells [1], [2]. For the characterization of laser doped emitters, SIMS (Secondary Ion Mass Spectroscopy) and ECV (Electrochemical Capacitance Voltage Measurement) techniques are used to analyze the emitter profile [3]. It is very difficult to get acceptable result by SIMS on a textured surface, so only ECV can be used. It has been shown, that a charge carrier depth profile can be measured on a homogeneous emitter only by ECV. The use of laser doping results in a non-homogeneous emitter. We have shown that the emitter depth is not just a function of the pulse power, but in addition of the surface structure of the wafer. The texture seems responsible for a strong variability in the doping profile. It has been shown, that the ECV measurement is not applicable to characterize the emitter depth on laser doped areas, because of the microscopic inhomogeneities in the emitter on the macroscopic measurement area. The real emitter profiles are to complex to be characterized by SIMS or ECV. We have shown that the variation in the emitter profile is resulting from the texture in the laser-doped regions

    Chiral Asymmetry and the Spectral Action

    Full text link
    We consider orthogonal connections with arbitrary torsion on compact Riemannian manifolds. For the induced Dirac operators, twisted Dirac operators and Dirac operators of Chamseddine-Connes type we compute the spectral action. In addition to the Einstein-Hilbert action and the bosonic part of the Standard Model Lagrangian we find the Holst term from Loop Quantum Gravity, a coupling of the Holst term to the scalar curvature and a prediction for the value of the Barbero-Immirzi parameter

    Representations of spectral coordinates in FITS

    Full text link
    Greisen & Calabretta describe a generalized method for specifying the coordinates of FITS data samples. Following that general method, Calabretta & Greisen describe detailed conventions for defining celestial coordinates as they are projected onto a two-dimensional plane. The present paper extends the discussion to the spectral coordinates of wavelength, frequency, and velocity. World coordinate functions are defined for spectral axes sampled linearly in wavelength, frequency, or velocity, linearly in the logarithm of wavelength or frequency, as projected by ideal dispersing elements, and as specified by a lookup table.Comment: 25 pages, 5 figure
    corecore