800 research outputs found
Chaos assisted adiabatic passage
We study the exact dynamics underlying stimulated Raman adiabatic passage
(STIRAP) for a particle in a multi-level anharmonic system (the infinite
square-well) driven by two sequential laser pulses, each with constant carrier
frequency. In phase space regions where the laser pulses create chaos, the
particle can be transferred coherently into energy states different from those
predicted by traditional STIRAP. It appears that a transition to chaos can
provide a new tool to control the outcome of STIRAP
Impact of Quantum Phase Transitions on Excited Level Dynamics
The influence of quantum phase transitions on the evolution of excited levels
in the critical parameter region is discussed. The analysis is performed for 1D
and 2D systems with first- and second-order ground-state transitions. Examples
include the cusp and nuclear collective Hamiltonians.Comment: 6 pages, 4 figure
Localization and the effects of symmetries in the thermalization properties of one-dimensional quantum systems
We study how the proximity to an integrable point or to localization as one
approaches the atomic limit, as well as the mixing of symmetries in the chaotic
domain, may affect the onset of thermalization in finite one-dimensional
systems. We consider systems of hard-core bosons at half-filling with nearest
neighbor hopping and interaction, and next-nearest neighbor interaction. The
latter breaks integrability and induces a ground-state superfluid to insulator
transition. By full exact diagonalization, we study chaos indicators and
few-body observables. We show that when different symmetry sectors are mixed,
chaos indicators associated with the eigenvectors, contrary to those related to
the eigenvalues, capture the onset of chaos. The results for the complexity of
the eigenvectors and for the expectation values of few-body observables confirm
the validity of the eigenstate thermalization hypothesis in the chaotic regime,
and therefore the occurrence of thermalization. We also study the properties of
the off-diagonal matrix elements of few-body observables in relation to the
transition from integrability to chaos and from chaos to localization.Comment: 12 pages, 13 figures, as published (Fig.09 was corrected in this
final version
Spin orbit coupling at the level of a single electron
We utilize electron counting techniques to distinguish a spin conserving fast
tunneling process and a slower process involving spin flips in
AlGaAs/GaAs-based double quantum dots. By studying the dependence of the rates
on the interdot tunnel coupling of the two dots, we find that as many as 4% of
the tunneling events occur with a spin flip related to spin-orbit coupling in
GaAs. Our measurement has a fidelity of 99 % in terms of resolving whether a
tunneling event occurred with a spin flip or not
Single-Pulse Preparation of the Uniform Superpositional State used in Quantum Algorithms
We examine a single-pulse preparation of the uniform superpositional wave
function, which includes all basis states, in a spin quantum computer. The
effective energy spectrum and the errors generated by this pulse are studied in
detail. We show that, in spite of the finite width of the energy spectrum
bands, amplitude and phase errors can be made reasonably small.Comment: RevTex, 5 pages, 7 eps figure
Radio-Frequency Single-Electron Refrigerator
We propose a cyclic refrigeration principle based on mesoscopic electron
transport. Synchronous sequential tunnelling of electrons in a
Coulomb-blockaded device, a normal metal-superconductor single-electron box,
results in a cooling power of at temperature
over a wide range of cycle frequencies . Electrostatic work, done by the
gate voltage source, removes heat from the Coulomb island with an efficiency of
, where is the superconducting gap. The
performance is not affected significantly by non-idealities, for instance by
offset charges. We propose ways of characterizing the system and of its
practical implementation.Comment: 5 pages, 4 figures; corrected typos, language improve
Metaproteomics of complex microbial communities in biogas plants
Production of biogas from agricultural biomass or organic wastes is an important source of renewable energy. Although thousands of biogas plants (BGPs) are operating in Germany, there is still a significant potential to improve yields, e.g. from fibrous substrates. In addition, process stability should be optimized. Besides evaluating technical measures, improving our understanding of microbial communities involved into the biogas process is considered as key issue to achieve both goals. Microscopic and genetic approaches to analyse community composition provide valuable experimental data, but fail to detect presence of enzymes and overall metabolic activity of microbial communities. Therefore, metaproteomics can significantly contribute to elucidate critical steps in the conversion of biomass to methane as it delivers combined functional and phylogenetic data. Although metaproteomics analyses are challenged by sample impurities, sample complexity and redundant protein identification, and are still limited by the availability of genome sequences, recent studies have shown promising results. In the following, the workflow and potential pitfalls for metaproteomics of samples from full-scale BGP are discussed. In addition, the value of metaproteomics to contribute to the further advancement of microbial ecology is evaluated. Finally, synergistic effects expected when metaproteomics is combined with advanced imaging techniques, metagenomics, metatranscriptomics and metabolomics are addressed
Lamination And Microstructuring Technology for a Bio-Cell Multiwell array
Microtechnology becomes a versatile tool for biological and biomedical
applications. Microwells have been established long but remained
non-intelligent up to now. Merging new fabrication techniques and handling
concepts with microelectronics enables to realize intelligent microwells
suitable for future improved cancer treatment. The described technology depicts
the basis for the fabrication of a elecronically enhanced microwell. Thin
aluminium sheets are structured by laser micro machining and laminated
successively to obtain registration tolerances of the respective layers of
5..10\^Am. The microwells lasermachined into the laminate are with
50..80\^Am diameter, allowing to hold individual cells within the well.
The individual process steps are described and results on the microstructuring
are given.Comment: Submitted on behalf of EDA Publishing Association
(http://irevues.inist.fr/EDA-Publishing
Similarity transformations approach for a generalized Fokker-Planck equation
By using similarity transformations approach, the exact propagator for a
generalized one-dimensional Fokker-Planck equation, with linear drift force and
space-time dependent diffusion coefficient, is obtained. The method is simple
and enables us to recover and generalize special cases studied through the Lie
algebraic approach and the Green function technique.Comment: 8 pages, no figure
- …