13,011 research outputs found

    Non-equilibrium ionization around clouds evaporating in the interstellar medium

    Get PDF
    It is of prime importance for global models of the interstellar medium to know whether dense clouds do or do not evaporate in the hot coronal gas. The rate of mass exchanges between phases depends very much on that. McKee and Ostriker's model, for instance, assumes that evaporation is important enough to control the expansion of supernova remnants, and that mass loss obeys the law derived by Cowie and McKee. In fact, the geometry of the magnetic field is nearly unknown, and it might totally inhibit evaporation, if the clouds are not regularly connected to the hot gas. Up to now, the only test of the theory is the U.V. observation (by the Copernicus and IUE satellites) of absorption lines of ions such as OVI or NV, that exist at temperatures of a few 100,000 K typical of transition layers around evaporating clouds. Other means of testing the theory are discussed

    Neutrino Masses in Split Supersymmetry

    Full text link
    We investigate the possibility to generate neutrino masses in the context of Split supersymmetric scenarios where all sfermions are very heavy. All relevant contributions coming from the R-parity violating terms to the neutrino mass matrix up to one-loop level are computed, showing the importance of the Higgs one-loop corrections. We conclude that it is not possible to generate all neutrino masses and mixings in Split SUSY with bilinear R-Parity violating interactions. In the case of Partial Split SUSY the one-loop Higgs contributions are enough to generate the neutrino masses and mixings in agreement with the experiment. In the context of minimal SUSY SU(5) we find new contributions which help us to generate neutrino masses in the case of Split SUSY.Comment: 33 pages, 6 figures, to appear in Physical Review
    • …
    corecore