8,121 research outputs found
False Vacuum Chaotic Inflation: The New Paradigm?
Recent work is reported on inflation model building in the context of
supergravity and superstrings, with special emphasis on False Vacuum (`Hybrid')
Chaotic Inflation. Globally supersymmetric models do not survive in generic
supergravity theories, but fairly simple conditions can be formulated which do
ensure successful supergravity inflation. The conditions are met in some of the
versions of supergravity that emerge from superstrings.Comment: 4 pages, LATEX, LANCASTER-TH 94-1
Hunting Down the Best Model of Inflation with Bayesian Evidence
We present the first calculation of the Bayesian evidence for different
prototypical single field inflationary scenarios, including representative
classes of small field and large field models. This approach allows us to
compare inflationary models in a well-defined statistical way and to determine
the current "best model of inflation". The calculation is performed numerically
by interfacing the inflationary code FieldInf with MultiNest. We find that
small field models are currently preferred, while large field models having a
self-interacting potential of power p>4 are strongly disfavoured. The class of
small field models as a whole has posterior odds of approximately 3:1 when
compared with the large field class. The methodology and results presented in
this article are an additional step toward the construction of a full numerical
pipeline to constrain the physics of the early Universe with astrophysical
observations. More accurate data (such as the Planck data) and the techniques
introduced here should allow us to identify conclusively the best inflationary
model.Comment: 12 pages, 2 figures, uses RevTeX. Misprint corrected, references
added. Matches published versio
Testing Two-Field Inflation
We derive semi-analytic formulae for the power spectra of two-field inflation
assuming an arbitrary potential and non-canonical kinetic terms, and we use
them both to build phenomenological intuition and to constrain classes of
two-field models using WMAP data. Using covariant formalism, we first develop a
framework for understanding the background field kinematics and introduce a
"slow-turn" approximation. Next, we find covariant expressions for the
evolution of the adiabatic/curvature and entropy/isocurvature modes, and we
discuss how the mode evolution can be inferred directly from the background
kinematics and the geometry of the field manifold. From these expressions, we
derive semi-analytic formulae for the curvature, isocurvature, and cross
spectra, and the spectral observables, all to second-order in the slow-roll and
slow-turn approximations. In tandem, we show how our covariant formalism
provides useful intuition into how the characteristics of the inflationary
Lagrangian translate into distinct features in the power spectra. In
particular, we find that key features of the power spectra can be directly read
off of the nature of the roll path, the curve the field vector rolls along with
respect to the field manifold. For example, models whose roll path makes a
sharp turn 60 e-folds before inflation ends tend to be ruled out because they
produce strong departures from scale invariance. Finally, we apply our
formalism to confront four classes of two-field models with WMAP data,
including doubly quadratic and quartic potentials and non-standard kinetic
terms, showing how whether a model is ruled out depends not only on certain
features of the inflationary Lagrangian, but also on the initial conditions.
Ultimately, models must possess the right balance of kinematical and dynamical
behaviors, which we capture in a set of functions that can be reconstructed
from spectral observables.Comment: Revised to match accepted PRD version: Improved discussion of
background kinematics and multi-field effects, added tables summarizing key
quantities and their links to observables, more detailed figures, fixed typos
in former equations (103) and (117). 49 PRD pages, 11 figure
Observational tests of inflation with a field derivative coupling to gravity
A field kinetic coupling with the Einstein tensor leads to a gravitationally
enhanced friction during inflation, by which even steep potentials with
theoretically natural model parameters can drive cosmic acceleration. In the
presence of this non-minimal derivative coupling we place observational
constraints on a number of representative inflationary models such as chaotic
inflation, inflation with exponential potentials, natural inflation, and hybrid
inflation. We show that most of the models can be made compatible with the
current observational data mainly due to the suppressed tensor-to-scalar ratio.Comment: 11 pages, 5 figure
Unambiguous probabilities in an eternally inflating universe
``Constants of Nature'' and cosmological parameters may in fact be variables
related to some slowly-varying fields. In models of eternal inflation, such
fields will take different values in different parts of the universe. Here I
show how one can assign probabilities to values of the ``constants'' measured
by a typical observer. This method does not suffer from ambiguities previously
discussed in the literature.Comment: 7 pages, Final version (minor changes), to appear in Phys. Rev. Let
Islands in the landscape
The string theory landscape consists of many metastable de Sitter vacua,
populated by eternal inflation. Tunneling between these vacua gives rise to a
dynamical system, which asymptotically settles down to an equilibrium state. We
investigate the effects of sinks to anti-de Sitter space, and show how their
existence can change probabilities in the landscape. Sinks can disturb the
thermal occupation numbers that would otherwise exist in the landscape and may
cause regions that were previously in thermal contact to be divided into
separate, thermally isolated islands.Comment: 31 pages, 8 figure
Inflation without Slow Roll
We draw attention to the possibility that inflation (i.e. accelerated
expansion) might continue after the end of slow roll, during a period of fast
oscillations of the inflaton field \phi . This phenomenon takes place when a
mild non-convexity inequality is satisfied by the potential V(\phi). The
presence of such a period of \phi-oscillation-driven inflation can
substantially modify reheating scenarios.
In some models the effect of these fast oscillations might be imprinted on
the primordial perturbation spectrum at cosmological scales.Comment: 9 pages, Revtex, psfig, 1 figure, minor modifications, references
adde
An Isocurvature CDM Cosmogony. I. A Worked Example of Evolution Through Inflation
I present a specific worked example of evolution through inflation to the
initial conditions for an isocurvature CDM model for structure formation. The
model invokes three scalar fields, one that drives power law inflation, one
that survives to become the present-day CDM, and one that gives the CDM field a
mass that slowly decreases during inflation and so ``tilts'' the primeval mass
fluctuation spectrum of the CDM. The functional forms for the potentials and
the parameter values that lead to an observationally acceptable model for
structure formation do not seem to be out of line with current ideas about the
physics of the very early universe. I argue in an accompanying paper that the
model offers an acceptable fit to main observational constraints.Comment: 11 pages, 3 postscript figures, uses aas2pp4.st
The Triple-Alpha Process and the Anthropically Allowed Values of the Weak Scale
In multiple-universe models, the constants of nature may have different
values in different universes. Agrawal, Barr, Donoghue and Seckel have pointed
out that the Higgs mass parameter, as the only dimensionful parameter of the
standard model, is of particular interest. By considering a range of values of
this parameter, they showed that the Higgs vacuum expectation value must have a
magnitude less than 5.0 times its observed value, in order for complex
elements, and thus life, to form. In this report, we look at the effects of the
Higgs mass parameter on the triple-alpha process in stars. This process, which
is greatly enhanced by a resonance in Carbon-12, is responsible for virtually
all of the carbon production in the universe. We find that the Higgs vacuum
expectation value must have a magnitude greater than 0.90 times its observed
value in order for an appreciable amount of carbon to form, thus significantly
narrowing the allowed region of Agrawal et al.Comment: 9 pages, 1 figur
From the Big Bang Theory to the Theory of a Stationary Universe
We consider chaotic inflation in the theories with the effective potentials
phi^n and e^{\alpha\phi}. In such theories inflationary domains containing
sufficiently large and homogeneous scalar field \phi permanently produce new
inflationary domains of a similar type. We show that under certain conditions
this process of the self-reproduction of the Universe can be described by a
stationary distribution of probability, which means that the fraction of the
physical volume of the Universe in a state with given properties (with given
values of fields, with a given density of matter, etc.) does not depend on
time, both at the stage of inflation and after it. This represents a strong
deviation of inflationary cosmology from the standard Big Bang paradigm. We
compare our approach with other approaches to quantum cosmology, and illustrate
some of the general conclusions mentioned above with the results of a computer
simulation of stochastic processes in the inflationary Universe.Comment: No changes to the file, but original figures are included. They
substantially help to understand this paper, as well as eternal inflation in
general, and what is now called the "multiverse" and the "string theory
landscape." High quality figures can be found at
http://www.stanford.edu/~alinde/LLMbigfigs
- …
