In multiple-universe models, the constants of nature may have different
values in different universes. Agrawal, Barr, Donoghue and Seckel have pointed
out that the Higgs mass parameter, as the only dimensionful parameter of the
standard model, is of particular interest. By considering a range of values of
this parameter, they showed that the Higgs vacuum expectation value must have a
magnitude less than 5.0 times its observed value, in order for complex
elements, and thus life, to form. In this report, we look at the effects of the
Higgs mass parameter on the triple-alpha process in stars. This process, which
is greatly enhanced by a resonance in Carbon-12, is responsible for virtually
all of the carbon production in the universe. We find that the Higgs vacuum
expectation value must have a magnitude greater than 0.90 times its observed
value in order for an appreciable amount of carbon to form, thus significantly
narrowing the allowed region of Agrawal et al.Comment: 9 pages, 1 figur