12,045 research outputs found

    Transport, atom blockade and output coupling in a Tonks-Girardeau gas

    Get PDF
    Recent experiments have demonstrated how quantum-mechanical impurities can be created within strongly correlated quantum gases and used to probe the coherence properties of these systems [S. Palzer, C. Zipkes, C. Sias, and M. K\"ohl, Phys. Rev. Lett. 103, 150601 (2009).]. Here we present a phenomenological model to simulate such an output coupler for a Tonks-Girardeau gas that shows qualitative agreement with the experimental results for atom transport and output coupling. Our model allows us to explore nonequilibrium transport phenomena in ultracold quantum gases and leads us to predict a regime of atom blockade, where the impurity component becomes localized in the parent cloud despite the presence of gravity. We show that this provides a stable mixed-species quantum gas in the strongly correlated limit

    Protecting subspaces by acting on the outside

    Full text link
    Many quantum control tasks aim at manipulating the state of a quantum mechanical system within a finite subspace of states. However, couplings to the outside are often inevitable. Here we discuss strategies which keep the system in the controlled subspace by applying strong interactions onto the outside. This is done by drawing analogies to simple toy models and to the quantum Zeno effect. Special attention is paid to the constructive use of dissipation in the protection of subspaces.Comment: 16 pages, 10 figure

    Tunneling, self-trapping and manipulation of higher modes of a BEC in a double well

    Get PDF
    We consider an atomic Bose-Einstein condensate trapped in a symmetric one-dimensional double well potential in the four-mode approximation and show that the semiclassical dynamics of the two ground state modes can be strongly influenced by a macroscopic occupation of the two excited modes. In particular, the addition of the two excited modes already unveils features related to the effect of dissipation on the condensate. In general, we find a rich dynamics that includes Rabi oscillations, a mixed Josephson-Rabi regime, self-trapping, chaotic behavior, and the existence of fixed points. We investigate how the dynamics of the atoms in the excited modes can be manipulated by controlling the atomic populations of the ground states.Comment: 12 pages, 5 figure

    Heisenberg uncertainty for qubit measurements

    Get PDF
    Reports on experiments recently performed in Vienna [Erhard et al, Nature Phys. 8, 185 (2012)] and Toronto [Rozema et al, Phys. Rev. Lett. 109, 100404 (2012)] include claims of a violation of Heisenberg's error-disturbance relation. In contrast, we have presented and proven a Heisenberg-type relation for joint measurements of position and momentum [Phys. Rev. Lett. 111, 160405 (2013)]. To resolve the apparent conflict, we formulate here a new general trade-off relation for errors in qubit measurements, using the same concepts as we did in the position-momentum case. We show that the combined errors in an approximate joint measurement of a pair of +/-1 valued observables A,B are tightly bounded from below by a quantity that measures the degree of incompatibility of A and B. The claim of a violation of Heisenberg is shown to fail as it is based on unsuitable measures of error and disturbance. Finally we show how the experiments mentioned may directly be used to test our error inequality.Comment: Version 3 contains further clarifications in our argument refuting the alleged violation of Heisenberg's error-disturbance relation. Some new material added on the connection between preparation uncertainty and approximation error relation

    A formal definition and a new security mechanism of physical unclonable functions

    Full text link
    The characteristic novelty of what is generally meant by a "physical unclonable function" (PUF) is precisely defined, in order to supply a firm basis for security evaluations and the proposal of new security mechanisms. A PUF is defined as a hardware device which implements a physical function with an output value that changes with its argument. A PUF can be clonable, but a secure PUF must be unclonable. This proposed meaning of a PUF is cleanly delineated from the closely related concepts of "conventional unclonable function", "physically obfuscated key", "random-number generator", "controlled PUF" and "strong PUF". The structure of a systematic security evaluation of a PUF enabled by the proposed formal definition is outlined. Practically all current and novel physical (but not conventional) unclonable physical functions are PUFs by our definition. Thereby the proposed definition captures the existing intuition about what is a PUF and remains flexible enough to encompass further research. In a second part we quantitatively characterize two classes of PUF security mechanisms, the standard one, based on a minimum secret read-out time, and a novel one, based on challenge-dependent erasure of stored information. The new mechanism is shown to allow in principle the construction of a "quantum-PUF", that is absolutely secure while not requiring the storage of an exponentially large secret. The construction of a PUF that is mathematically and physically unclonable in principle does not contradict the laws of physics.Comment: 13 pages, 1 figure, Conference Proceedings MMB & DFT 2012, Kaiserslautern, German
    corecore