129,779 research outputs found
Pattern Count on Multiply Restricted Permutations
Previous work has studied the pattern count on singly restricted
permutations. In this work, we focus on patterns of length 3 in multiply
restricted permutations, especially for double and triple pattern-avoiding
permutations. We derive explicit formulae or generating functions for various
occurrences of length 3 patterns on multiply restricted permutations, as well
as some combinatorial interpretations for non-trivial pattern relationships.Comment: 23 pages, 2 figure
Spatial Aggregation: Theory and Applications
Visual thinking plays an important role in scientific reasoning. Based on the
research in automating diverse reasoning tasks about dynamical systems,
nonlinear controllers, kinematic mechanisms, and fluid motion, we have
identified a style of visual thinking, imagistic reasoning. Imagistic reasoning
organizes computations around image-like, analogue representations so that
perceptual and symbolic operations can be brought to bear to infer structure
and behavior. Programs incorporating imagistic reasoning have been shown to
perform at an expert level in domains that defy current analytic or numerical
methods. We have developed a computational paradigm, spatial aggregation, to
unify the description of a class of imagistic problem solvers. A program
written in this paradigm has the following properties. It takes a continuous
field and optional objective functions as input, and produces high-level
descriptions of structure, behavior, or control actions. It computes a
multi-layer of intermediate representations, called spatial aggregates, by
forming equivalence classes and adjacency relations. It employs a small set of
generic operators such as aggregation, classification, and localization to
perform bidirectional mapping between the information-rich field and
successively more abstract spatial aggregates. It uses a data structure, the
neighborhood graph, as a common interface to modularize computations. To
illustrate our theory, we describe the computational structure of three
implemented problem solvers -- KAM, MAPS, and HIPAIR --- in terms of the
spatial aggregation generic operators by mixing and matching a library of
commonly used routines.Comment: See http://www.jair.org/ for any accompanying file
Recommended from our members
Cathode chemistries and electrode parameters affecting the fast charging performance of li-ion batteries
Li-ion battery fast-charging technology plays an important role in popularizing electric vehicles (EV), which critically need a charging process that is as simple and quick as pumping fuel for conventional internal combustion engine vehicles. To ensure stable and safe fast charging of Li-ion battery, understanding the electrochemical and thermal behaviors of battery electrodes under high rate charges is crucial, since it provides insight into the limiting factors that restrict the battery from acquiring energy at high rates. In this work, charging simulations are performed on Li-ion batteries that use the LiCoO2 (LCO), LiMn2O4 (LMO), and LiFePO4 (LFP) as the cathodes. An electrochemical-thermal coupling model is first developed and experimentally validated on a 2.6Ah LCO based Li-ion battery and is then adjusted to study the LMO and LFP based batteries. LCO, LMO, and LFP based Li-ion batteries exhibited different thermal responses during charges due to their different entropy profiles, and results show that the entropy change of the LCO battery plays a positive role in alleviating its temperature rise during charges. Among the batteries, the LFP battery is difficult to be charged at high rates due to the charge transfer limitation caused by the low electrical conductivity of the LFP cathode, which, however, can be improved through doping or adding conductive additives. A parametric study is also performed by considering different electrode thicknesses and secondary particle sizes. It reveals that the concentration polarization at the electrode and particle levels can be weaken by using thin electrodes and small solid particles, respectively. These changes are helpful to mitigate the diffusion limitation and improve the performance of Li-ion batteries during high rate charges, but careful consideration should be taken when applying these changes since they can reduce the energy density of the batteries
Production of oxygen from lunar ilmenite
The overall objective of this project was to develop a novel carbothermal reduction process for production of oxygen from lunar ilmenite. The specific objective was to use a reaction sequence in which a wide variety of carbonaceous compounds (including carbonaceous wastes) can be used as reducing agents. During the first phase, two reactor systems were designed, constructed, and operated to study the reaction fundamental important in this process. One system is a small fluidized bed, and the other is a thermo-gravimetric reactor system. Preliminary experiments on synthetic ilmenite are conducted to study the effect of carbon type, carbon loading, temperature, and gas flow rate. Results indicate that a reaction path based on carbon gasification can be used to promote the overall kinetics. A unique temperature and concentration-programmed reaction procedure was being developed for rapid parametric study of the process
- …