172 research outputs found
Search for CP Violation in the decays D+ -> K_S pi+ and D+ -> K_S K+
A high statistics sample of photo-produced charm from the FOCUS(E831)
experiment at Fermilab has been used to search for direct CP violation in the
decays D+->K_S pi+ and D+ -> K_S K+. We have measured the following asymmetry
parameters relative to D+->K-pi+pi+: A_CP(K_S pi+) = (-1.6 +/- 1.5 +/- 0.9)%,
A_CP(K_S K+) = (+6.9 +/- 6.0 +/- 1.5)% and A_CP(K_S K+) = (+7.1 +/- 6.1 +/-
1.2)% relative to D+->K_S pi+. The first errors quoted are statistical and the
second are systematic. We also measure the relative branching ratios:
\Gamma(D+->\bar{K0}pi+)/\Gamma(D+->K-pi+pi+) = (30.60 +/- 0.46 +/- 0.32)%,
\Gamma(D+->\bar{K0}K+)/\Gamma(D+->K-pi+pi+) = (6.04 +/- 0.35 +/- 0.30)% and
\Gamma(D+->\bar{K0}K+)/\Gamma(D+->\bar{K0}pi+) = (19.96 +/- 1.19 +/- 0.96)%.Comment: 4 pages, 3 figure
A measurement of branching ratios of and hadronic decays to four-body final states containing a
We have studied hadronic four-body decays of and mesons with a
in the final state using data recorded during the 1996-1997 fixed-target
run at Fermilab high energy photoproduction experiment FOCUS. We report a new
branching ratio measurement of . We make the first observation
of three new decay modes with branching ratios ,
\Gamma(D^+\to\K_S K^+ K^-\pi^+)/\Gamma(D^+\to K_S
\pi^+\pi^+\pi^-)=0.0077\pm0.0015\pm0.0009, and , where
in each case the first error is statistical and the second error is systematic.Comment: 4 pages, 1 table, 2 figures, submitted to Physical Review Letter
A High Statistics Measurement of the Lambdac+ Lifetime
A high statistics measurement of the Lambdac+ lifetime from the Fermilab
fixed-target FOCUS photoproduction experiment is presented. We describe the
analysis technique with particular attention to the determination of the
systematic uncertainty. The measured value of 204.6 +/- 3.4 (stat.) +/- 2.5
(syst.) fs from 8034 +/- 122 Lambdac -> pKpi decays represents a significant
improvement over the present world average.Comment: Submitted to Physical Review Letter
A Measurement of the Ds+ Lifetime
A high statistics measurement of the Ds+ lifetime from the Fermilab
fixed-target FOCUS photoproduction experiment is presented. We describe the
analysis of the two decay modes, Ds+ -> phi(1020)pi+ and Ds+ ->
\bar{K}*(892)0K+, used for the measurement. The measured lifetime is 507.4 +/-
5.5 (stat.) +/- 5.1 (syst.) fs using 8961 +/- 105 Ds+ -> phi(1020)pi+ and 4680
+/- 90 Ds+ -> \bar{K}*(892)0K+ decays. This is a significant improvement over
the present world average.Comment: 5 pages, 3 figures, 2 tables, submitted to PR
Measurement of the relative branching ratio BR(\Xi_c^+ \to p^+ K^-\pi^+)\BR(\Xi_c^+ \to \Xi^- \pi^+ \pi^+)
We report the observation of the Cabibbo suppressed decay \Xi_c^+ \to p
K^-\pi^+ using data collected with the FOCUS spectrometer during the 1996--97
Fermilab fixed target run. We find a \Xi_c^+ signal peak of 202\pm35 events. We
have measured the relative branching ratios BR(\Xi^+_c\to p
K^-\pi^+)/BR(\Xi^+_c\to\Xi^-\pi^+\pi^+)= 0.234 \pm 0.047 \pm 0.022 and
BR(\Xi^+_c\to p \bar{K}^*(892)^0)/BR(\Xi^+_c\to p K^-\pi^+)= 0.54 \pm 0.09 \pm
0.05 .Comment: 9 pages, 4 figure
Measurement of the D+ and Ds+ decays into K+K-K+
We present the first clear observation of the doubly Cabibbo suppressed decay
D+ --> K-K+K+ and the first observation of the singly Cabibbo suppressed decay
Ds+ --> K-K+K+. These signals have been obtained by analyzing the high
statistics sample of photoproduced charm particles of the FOCUS(E831)
experiment at Fermilab. We measure the following relative branching ratios:
Gamma(D+ --> K-K+K+)/Gamma(D+ --> K-pi+pi+) = (9.49 +/- 2.17(statistical) +/-
0.22(systematic))x10^-4 and Gamma(Ds+ --> K-K+K+)/Gamma(Ds+ --> K-K+pi+) =
(8.95 +/- 2.12(statistical) +2.24(syst.) -2.31(syst.))x10^-3.Comment: 10 pages, 8 figure
A Non-parametric Approach to the D+ to K*0bar mu+ nu Form Factors
Using a large sample of D+ -> K- pi+ mu+ nu decays collected by the FOCUS
photoproduction experiment at Fermilab, we present the first measurements of
the helicity basis form factors free from the assumption of spectroscopic pole
dominance. We also present the first information on the form factor that
controls the s-wave interference discussed in a previous paper by the FOCUS
collaboration. We find reasonable agreement with the usual assumption of
spectroscopic pole dominance and measured form factor ratios.Comment: 14 pages, 5 figures, and 2 tables. We updated the previous version by
changing some words, removing one plot, and adding two tables. These changes
are mostly stylisti
Search for and Using Genetic Programming Event Selection
We apply a genetic programming technique to search for the double Cabibbo
suppressed decays and .
We normalize these decays to their Cabibbo favored partners and find
\Lambda_c^+ \to p K^+ \pi^-\Lambda_c^+ \to p K^-
\pi^+ and D_s^+ \to K^+ K^+
\pi^-D_s^+ \to K^+ K^- \pi^+ where
the first errors are statistical and the second are systematic. Expressed as
90% confidence levels (CL), we find and respectively.
This is the first successful use of genetic programming in a high energy
physics data analysis.Comment: 10 page
New Measurements of the D+ to K* mu nu Form Factor Ratios
Using a large sample of D+ to K- pi+ mu+ nu decays collected by the FOCUS
photoproduction experiment at Fermilab, we present new measurements of two
semileptonic form factor ratios: rv and r2. We find rv = 1.504 \pm 0.057 \pm
0.039 and r2 = 0.875 \pm 0.049 \pm 0.064. Our form factor results include the
effects of the s-wave interference discussed in a previous paper.Comment: 12 pages, 5 figure
Study of the D^0 \to pi^-pi^+pi^-pi^+ decay
Using data from the FOCUS (E831) experiment at Fermilab, we present new
measurements for the Cabibbo-suppressed decay mode . We measure the branching ratio .
An amplitude analysis has been performed, a first for this channel, in order to
determine the resonant substructure of this decay mode. The dominant component
is the decay , accounting for 60% of the decay rate.
The second most dominant contribution comes from the decay , with a fraction of 25%. We also study the
line shape and resonant substructure. Using the helicity formalism for the
angular distribution of the decay , we measure
a longitudinal polarization of %.Comment: 38 pages, 8 figures. accepted for publication in Physical Review
- …