6,169 research outputs found

    Many-body Theory at Extreme Isospin

    Get PDF
    The structure of nuclei far off beta-stability is investigated by nuclear many-body theory. In-medium interactions for asymmetric nuclear matter are obtained by (Dirac-) Brueckner theory thus establishing the link of nuclear forces to free space interactions. HFB and RPA theory is used to describe ground and excited states of nuclei from light to heavy masses. In extreme dripline systems pairing and core polarization are found to be most important for the binding, especially of halo nuclei. The calculations show that far off stability mean-field dynamics is gradually replaced by dynamical correlations, giving rise to the dissolution of shell structures.Comment: 10 pages, 5 figures, to appear in the proceedings of Nuclear Physics at the Borderline, NPBL2001, Lipari, Sicily, Italy, May 2001 (World Scientific

    A search for spectral alteration effects in chondritic gas-rich breccias

    Get PDF
    Several samples of gas-rich breccias were selected, including slabs of the Kapoeta howardite, the ordinary chondrites Dubrovnik, Cangas de Onis, and Dimmit. Numerous 0.8 to 2.5 micron reflection spectra of selected areas on sawed or broken surfaces were measured with the Planetary Geosciences Division spectrogoniometer. While these spectra are not directly comparable to those of powered samples, comparisons within the data set should reveal any spectral differences due to weathering. These results indicate that unknown regolith processes do not confer the ordinary-chondrite parent bodies with an altered layer exhibiting S-class spectral properties. This is consistent with recent interpretations of the new Q-class of asteroids as the ordinary-chondrite parent bodies. However, significant spectral effects do occur in asteroid regoliths: darkening and suppression of absorption bands in highly shocked material, as seen previously in the so-called black chondrites; and segregation of metal in large impact melt pools on chondritic asteroids, which may have achondritic spectra. Neither of these effects is likely to be significant in interpreting current integral-disk spectra, but should be searched for in spectral maps returned by future spacecraft

    Adsorption of cobalt on graphene: Electron correlation effects from a quantum chemical perspective

    Get PDF
    In this work, we investigate the adsorption of a single cobalt atom (Co) on graphene by means of the complete active space self-consistent field approach, additionally corrected by the second-order perturbation theory. The local structure of graphene is modeled by a planar hydrocarbon cluster (C24_{24}H12_{12}). Systematic treatment of the electron correlations and the possibility to study excited states allow us to reproduce the potential energy curves for different electronic configurations of Co. We find that upon approaching the surface, the ground-state configuration of Co undergoes several transitions, giving rise to two stable states. The first corresponds to the physisorption of the adatom in the high-spin 3d74s23d^74s^2 (S=3/2S=3/2) configuration, while the second results from the chemical bonding formed by strong orbital hybridization, leading to the low-spin 3d93d^9 (S=1/2S=1/2) state. Due to the instability of the 3d93d^9 configuration, the adsorption energy of Co is small in both cases and does not exceed 0.35 eV. We analyze the obtained results in terms of a simple model Hamiltonian that involves Coulomb repulsion (UU) and exchange coupling (JJ) parameters for the 3dd shell of Co, which we estimate from first-principles calculations. We show that while the exchange interaction remains constant upon adsorption (1.1\simeq1.1 eV), the Coulomb repulsion significantly reduces for decreasing distances (from 5.3 to 2.6±\pm0.2 eV). The screening of UU favors higher occupations of the 3dd shell and thus is largely responsible for the interconfigurational transitions of Co. Finally, we discuss the limitations of the approaches that are based on density functional theory with respect to transition metal atoms on graphene, and we conclude that a proper account of the electron correlations is crucial for the description of adsorption in such systems.Comment: 12 pages, 6 figures, 2 table

    Interfacial interactions between local defects in amorphous SiO2_2 and supported graphene

    Full text link
    We present a density functional study of graphene adhesion on a realistic SiO2_2 surface taking into account van der Waals (vdW) interactions. The SiO2_2 substrate is modeled at the local scale by using two main types of surface defects, typical for amorphous silica: the oxygen dangling bond and three-coordinated silicon. The results show that the nature of adhesion between graphene and its substrate is qualitatively dependent on the surface defect type. In particular, the interaction between graphene and silicon-terminated SiO2_2 originates exclusively from the vdW interaction, whereas the oxygen-terminated surface provides additional ionic contribution to the binding arising from interfacial charge transfer (pp-type doping of graphene). Strong doping contrast for the different surface terminations provides a mechanism for the charge inhomogeneity of graphene on amorphous SiO2_2 observed in experiments. We found that independent of the considered surface morphologies, the typical electronic structure of graphene in the vicinity of the Dirac point remains unaltered in contact with the SiO2_2 substrate, which points to the absence of the covalent interactions between graphene and amorphous silica. The case of hydrogen-passivated SiO2_2 surfaces is also examined. In this situation, the binding with graphene is practically independent of the type of surface defects and arises, as expected, from the vdW interactions. Finally, the interface distances obtained are shown to be in good agreement with recent experimental studies.Comment: 10 pages, 4 figure

    Graphene adhesion on mica: Role of surface morphology

    Get PDF
    We investigate theoretically the adhesion and electronic properties of graphene on a muscovite mica surface using the density functional theory (DFT) with van der Waals (vdW) interactions taken into account (the vdW-DF approach). We found that irregularities in the local structure of cleaved mica surface provide different mechanisms for the mica-graphene binding. By assuming electroneutrality for both surfaces, the binding is mainly of vdW nature, barely exceeding thermal energy per carbon atom at room temperature. In contrast, if potassium atoms are non uniformly distributed on mica, the different regions of the surface give rise to nn- or pp-type doping of graphene. In turn, an additional interaction arises between the surfaces, significantly increasing the adhesion. For each case the electronic states of graphene remain unaltered by the adhesion. It is expected, however, that the Fermi level of graphene supported on realistic mica could be shifted relative to the Dirac point due to asymmetry in the charge doping. Obtained variations of the distance between graphene and mica for different regions of the surface are found to be consistent with recent atomic force microscopy experiments. A relative flatness of mica and the absence of interlayer covalent bonding in the mica-graphene system make this pair a promising candidate for practical use.Comment: 6 pages, 3 figure

    Adsorption of diatomic halogen molecules on graphene: A van der Waals density functional study

    Get PDF
    The adsorption of fluorine, chlorine, bromine, and iodine diatomic molecules on graphene has been investigated using density functional theory with taking into account nonlocal correlation effects by means of vdW-DF approach. It is shown that the van der Waals interaction plays a crucial role in the formation of chemical bonding between graphene and halogen molecules, and is therefore important for a proper description of adsorption in this system. In-plane orientation of the molecules has been found to be more stable than the orientation perpendicular to the graphene layer. In the cases of F2_2, Br2_2 and I2_2 we also found an ionic contribution to the binding energy, slowly vanishing with distance. Analysis of the electronic structure shows that ionic interaction arises due to the charge transfer from graphene to the molecules. Furthermore, we found that the increase of impurity concentration leads to the conduction band formation in graphene due to interaction between halogen molecules. In addition, graphite intercalation by halogen molecules has been investigated. In the presence of halogen molecules the binding between graphite layers becomes significantly weaker, which is in accordance with the results of recent experiments on sonochemical exfoliation of intercalated graphite.Comment: Submitted to PR

    Changing the geographies of sub/urban theory: Asian perspectives

    Get PDF
    This special issue examines the intersection of global suburbanization and Asian urbanism. The papers provide a perspective from the examination of peripheral areas in fast growing Asian metropolitan regions. From the standpoint of the peripheral space of Jakarta, Kusno challenges the prediction that the logic of capital accumulation would eventually lead to a complete urban area, leaving behind the rural. From the vantage point of Gurgaon at the edge of New Delhi, Gururani argues that many villages straddle the rural–urban divide and are embedded in property development. Describing urban villages, new towns and gated estates in peri-urban Guangzhou, Li et al. portray an assemblage of the local state, villagers, real estate developers and middle-class consumers. Investigating transit-oriented development in Shanghai, Shen and Wu reveal how the concept is borrowed by key state-owned developers to finance infrastructure development. Without proposing a concept of Asian suburbanism, the papers depict a complex urban world in Asia

    Teleological Essentialism: Generalized

    Get PDF
    Natural/social kind essentialism is the view that natural kind categories, both living and non-living natural kinds, as well as social kinds (e.g., race, gender), are essentialized. On this view, artifactual kinds are not essentialized. Our view—teleological essentialism—is that a broad range of categories are essentialized in terms of teleology, including artifacts. Utilizing the same kinds of experiments typically used to provide evidence of essentialist thinking—involving superficial change (study 1), transformation of insides (study 2) and inferences about offspring (study 3)—we find support for the view that a broad range of categories—living natural kinds, non-living natural kinds and artifactual kinds—are essentialized in terms of teleology. Study 4 tests a unique prediction of teleological essentialism and also provides evidence that people make inferences about purposes which in turn guide categorization judgments
    corecore