6,169 research outputs found
Many-body Theory at Extreme Isospin
The structure of nuclei far off beta-stability is investigated by nuclear
many-body theory. In-medium interactions for asymmetric nuclear matter are
obtained by (Dirac-) Brueckner theory thus establishing the link of nuclear
forces to free space interactions. HFB and RPA theory is used to describe
ground and excited states of nuclei from light to heavy masses. In extreme
dripline systems pairing and core polarization are found to be most important
for the binding, especially of halo nuclei. The calculations show that far off
stability mean-field dynamics is gradually replaced by dynamical correlations,
giving rise to the dissolution of shell structures.Comment: 10 pages, 5 figures, to appear in the proceedings of Nuclear Physics
at the Borderline, NPBL2001, Lipari, Sicily, Italy, May 2001 (World
Scientific
A search for spectral alteration effects in chondritic gas-rich breccias
Several samples of gas-rich breccias were selected, including slabs of the Kapoeta howardite, the ordinary chondrites Dubrovnik, Cangas de Onis, and Dimmit. Numerous 0.8 to 2.5 micron reflection spectra of selected areas on sawed or broken surfaces were measured with the Planetary Geosciences Division spectrogoniometer. While these spectra are not directly comparable to those of powered samples, comparisons within the data set should reveal any spectral differences due to weathering. These results indicate that unknown regolith processes do not confer the ordinary-chondrite parent bodies with an altered layer exhibiting S-class spectral properties. This is consistent with recent interpretations of the new Q-class of asteroids as the ordinary-chondrite parent bodies. However, significant spectral effects do occur in asteroid regoliths: darkening and suppression of absorption bands in highly shocked material, as seen previously in the so-called black chondrites; and segregation of metal in large impact melt pools on chondritic asteroids, which may have achondritic spectra. Neither of these effects is likely to be significant in interpreting current integral-disk spectra, but should be searched for in spectral maps returned by future spacecraft
Adsorption of cobalt on graphene: Electron correlation effects from a quantum chemical perspective
In this work, we investigate the adsorption of a single cobalt atom (Co) on
graphene by means of the complete active space self-consistent field approach,
additionally corrected by the second-order perturbation theory. The local
structure of graphene is modeled by a planar hydrocarbon cluster
(CH). Systematic treatment of the electron correlations and the
possibility to study excited states allow us to reproduce the potential energy
curves for different electronic configurations of Co. We find that upon
approaching the surface, the ground-state configuration of Co undergoes several
transitions, giving rise to two stable states. The first corresponds to the
physisorption of the adatom in the high-spin ()
configuration, while the second results from the chemical bonding formed by
strong orbital hybridization, leading to the low-spin () state.
Due to the instability of the configuration, the adsorption energy of Co
is small in both cases and does not exceed 0.35 eV. We analyze the obtained
results in terms of a simple model Hamiltonian that involves Coulomb repulsion
() and exchange coupling () parameters for the 3 shell of Co, which we
estimate from first-principles calculations. We show that while the exchange
interaction remains constant upon adsorption ( eV), the Coulomb
repulsion significantly reduces for decreasing distances (from 5.3 to
2.60.2 eV). The screening of favors higher occupations of the 3
shell and thus is largely responsible for the interconfigurational transitions
of Co. Finally, we discuss the limitations of the approaches that are based on
density functional theory with respect to transition metal atoms on graphene,
and we conclude that a proper account of the electron correlations is crucial
for the description of adsorption in such systems.Comment: 12 pages, 6 figures, 2 table
Interfacial interactions between local defects in amorphous SiO and supported graphene
We present a density functional study of graphene adhesion on a realistic
SiO surface taking into account van der Waals (vdW) interactions. The
SiO substrate is modeled at the local scale by using two main types of
surface defects, typical for amorphous silica: the oxygen dangling bond and
three-coordinated silicon. The results show that the nature of adhesion between
graphene and its substrate is qualitatively dependent on the surface defect
type. In particular, the interaction between graphene and silicon-terminated
SiO originates exclusively from the vdW interaction, whereas the
oxygen-terminated surface provides additional ionic contribution to the binding
arising from interfacial charge transfer (-type doping of graphene). Strong
doping contrast for the different surface terminations provides a mechanism for
the charge inhomogeneity of graphene on amorphous SiO observed in
experiments. We found that independent of the considered surface morphologies,
the typical electronic structure of graphene in the vicinity of the Dirac point
remains unaltered in contact with the SiO substrate, which points to the
absence of the covalent interactions between graphene and amorphous silica. The
case of hydrogen-passivated SiO surfaces is also examined. In this
situation, the binding with graphene is practically independent of the type of
surface defects and arises, as expected, from the vdW interactions. Finally,
the interface distances obtained are shown to be in good agreement with recent
experimental studies.Comment: 10 pages, 4 figure
Graphene adhesion on mica: Role of surface morphology
We investigate theoretically the adhesion and electronic properties of
graphene on a muscovite mica surface using the density functional theory (DFT)
with van der Waals (vdW) interactions taken into account (the vdW-DF approach).
We found that irregularities in the local structure of cleaved mica surface
provide different mechanisms for the mica-graphene binding. By assuming
electroneutrality for both surfaces, the binding is mainly of vdW nature,
barely exceeding thermal energy per carbon atom at room temperature. In
contrast, if potassium atoms are non uniformly distributed on mica, the
different regions of the surface give rise to - or -type doping of
graphene. In turn, an additional interaction arises between the surfaces,
significantly increasing the adhesion. For each case the electronic states of
graphene remain unaltered by the adhesion. It is expected, however, that the
Fermi level of graphene supported on realistic mica could be shifted relative
to the Dirac point due to asymmetry in the charge doping. Obtained variations
of the distance between graphene and mica for different regions of the surface
are found to be consistent with recent atomic force microscopy experiments. A
relative flatness of mica and the absence of interlayer covalent bonding in the
mica-graphene system make this pair a promising candidate for practical use.Comment: 6 pages, 3 figure
Adsorption of diatomic halogen molecules on graphene: A van der Waals density functional study
The adsorption of fluorine, chlorine, bromine, and iodine diatomic molecules
on graphene has been investigated using density functional theory with taking
into account nonlocal correlation effects by means of vdW-DF approach. It is
shown that the van der Waals interaction plays a crucial role in the formation
of chemical bonding between graphene and halogen molecules, and is therefore
important for a proper description of adsorption in this system. In-plane
orientation of the molecules has been found to be more stable than the
orientation perpendicular to the graphene layer. In the cases of F, Br
and I we also found an ionic contribution to the binding energy, slowly
vanishing with distance. Analysis of the electronic structure shows that ionic
interaction arises due to the charge transfer from graphene to the molecules.
Furthermore, we found that the increase of impurity concentration leads to the
conduction band formation in graphene due to interaction between halogen
molecules. In addition, graphite intercalation by halogen molecules has been
investigated. In the presence of halogen molecules the binding between graphite
layers becomes significantly weaker, which is in accordance with the results of
recent experiments on sonochemical exfoliation of intercalated graphite.Comment: Submitted to PR
Changing the geographies of sub/urban theory: Asian perspectives
This special issue examines the intersection of global suburbanization and Asian urbanism. The papers provide a perspective from the examination of peripheral areas in fast growing Asian metropolitan regions. From the standpoint of the peripheral space of Jakarta, Kusno challenges the prediction that the logic of capital accumulation would eventually lead to a complete urban area, leaving behind the rural. From the vantage point of Gurgaon at the edge of New Delhi, Gururani argues that many villages straddle the rural–urban divide and are embedded in property development. Describing urban villages, new towns and gated estates in peri-urban Guangzhou, Li et al. portray an assemblage of the local state, villagers, real estate developers and middle-class consumers. Investigating transit-oriented development in Shanghai, Shen and Wu reveal how the concept is borrowed by key state-owned developers to finance infrastructure development. Without proposing a concept of Asian suburbanism, the papers depict a complex urban world in Asia
Teleological Essentialism: Generalized
Natural/social kind essentialism is the view that natural kind categories, both living and non-living natural kinds, as well as social kinds (e.g., race, gender), are essentialized. On this view, artifactual kinds are not essentialized. Our view—teleological essentialism—is that a broad range of categories are essentialized in terms of teleology, including artifacts. Utilizing the same kinds of experiments typically used to provide evidence of essentialist thinking—involving superficial change (study 1), transformation of insides (study 2) and inferences about offspring (study 3)—we find support for the view that a broad range of categories—living natural kinds, non-living natural kinds and artifactual kinds—are essentialized in terms of teleology. Study 4 tests a unique prediction of teleological essentialism and also provides evidence that people make inferences about purposes which in turn guide categorization judgments
- …