65 research outputs found
Generalized Gibbs ensembles for time dependent processes
An information theory description of finite systems explicitly evolving in
time is presented for classical as well as quantum mechanics. We impose a
variational principle on the Shannon entropy at a given time while the
constraints are set at a former time. The resulting density matrix deviates
from the Boltzmann kernel and contains explicit time odd components which can
be interpreted as collective flows. Applications include quantum brownian
motion, linear response theory, out of equilibrium situations for which the
relevant information is collected within different time scales before entropy
saturation, and the dynamics of the expansion
A Real-Space Full Multigrid study of the fragmentation of Li11+ clusters
We have studied the fragmentation of Li11+ clusters into the two
experimentally observed products (Li9+,Li2) and (Li10+,Li) The ground state
structures for the two fragmentation channels are found by Molecular Dynamics
Simulated Annealing in the framework of Local Density Functional theory.
Energetics considerations suggest that the fragmentation process is dominated
by non-equilibrium processes. We use a real-space approach to solve the
Kohn-Sham problem, where the Laplacian operator is discretized according to the
Mehrstellen scheme, and take advantage of a Full MultiGrid (FMG) strategy to
accelerate convergence. When applied to isolated clusters we find our FMG
method to be more efficient than state-of-the-art plane wave calculations.Comment: 9 pages + 6 Figures (in gzipped tar file
Formalism for Multiphoton Plasmon Excitation in Jellium Clusters
We present a new formalism for the description of multiphoton plasmon
excitation processes in jellium clusters. By using our method, we demonstrate
that, in addition to dipole plasmon excitations, the multipole plasmons
(quadrupole, octupole, etc) can be excited in a cluster by multiphoton
absorption processes, which results in a significant difference between plasmon
resonance profiles in the cross sections for multiphoton as compared to
single-photon absorption. We calculate the cross sections for multiphoton
absorption and analyse the balance between the surface and volume plasmon
contributions to multipole plasmons.Comment: 29 pages, 1 figur
Phase Transition in Small System
Everybody knows that when a liquid is heated, its temperature increases until
the moment when it starts to boil. The increase in temperature then stops, all
heat being used to transform the liquid into vapor. What is the microscopic
origin of such a strange behavior? Does a liquid drop containing only few
molecules behave the same? Recent experimental and theoretical developments
seem to indicate that at the elementary level of very small systems, this
anomaly appears in an even more astonishing way: during the change of state -
for example from liquid to gas - the system cools whereas it is heated, i.e.
its temperature decreases while its energy increases. This paper presents a
review of our understanding of the negative specific heat phenomenon
Ab initio studies of structures and properties of small potassium clusters
We have studied the structure and properties of potassium clusters containing
even number of atoms ranging from 2 to 20 at the ab initio level. The geometry
optimization calculations are performed using all-electron density functional
theory with gradient corrected exchange-correlation functional. Using these
optimized geometries we investigate the evolution of binding energy, ionization
potential, and static polarizability with the increasing size of the clusters.
The polarizabilities are calculated by employing Moller-Plesset perturbation
theory and time dependent density functional theory. The polarizabilities of
dimer and tetramer are also calculated by employing large basis set coupled
cluster theory with single and double excitations and perturbative triple
excitations. The time dependent density functional theory calculations of
polarizabilities are carried out with two different exchange-correlation
potentials: (i) an asymptotically correct model potential and (ii) within the
local density approximation. A systematic comparison with the other available
theoretical and experimental data for various properties of small potassium
clusters mentioned above has been performed. These comparisons reveal that both
the binding energy and the ionization potential obtained with gradient
corrected potential match quite well with the already published data.
Similarly, the polarizabilities obtained with Moller-Plesset perturbation
theory and with model potential are quite close to each other and also close to
experimental data.Comment: 33 pages including 10 figure
A far-ultraviolet-driven photoevaporation flow observed in a protoplanetary disk.
Most low-mass stars form in stellar clusters that also contain massive stars, which are sources of far-ultraviolet (FUV) radiation. Theoretical models predict that this FUV radiation produces photodissociation regions (PDRs) on the surfaces of protoplanetary disks around low-mass stars, which affects planet formation within the disks. We report James Webb Space Telescope and Atacama Large Millimeter Array observations of a FUV-irradiated protoplanetary disk in the Orion Nebula. Emission lines are detected from the PDR; modeling their kinematics and excitation allowed us to constrain the physical conditions within the gas. We quantified the mass-loss rate induced by the FUV irradiation and found that it is sufficient to remove gas from the disk in less than a million years. This is rapid enough to affect giant planet formation in the disk
Preferential photosynthetic uptake of exogenous HCO3 in the marine macroalga Chondrus crispus.
International audienc
- âŠ