4,703 research outputs found
Spin-Forster transfer in optically excited quantum dots
The mechanisms of energy and spin transfer in quantum dot pairs coupled via
the Coulomb interaction are studied. Exciton transfer can be resonant or
phonon-assisted. In both cases, the transfer rates strongly depend on the
resonance conditions. The spin selection rules in the transfer process come
from the exchange and spin-orbit interactions. The character of energy
dissipation in spin transfer is different than that in the traditional spin
currents. The spin-dependent photon cross-correlation functions reflect the
exciton transfer process. In addition, a mathematical method to calculate
F\"orster transfer in crystalline nanostructures beyond the dipole-dipole
approximation is described.Comment: 22 pages, 10 figures, Phys. Rev. B, in pres
Ion-ion dynamic structure factor, acoustic modes and equation of state of two-temperature warm dense aluminum
The ion-ion dynamical structure factor and the equation of state of warm
dense aluminum in a two-temperature quasi-equilibrium state, with the electron
temperature higher than the ion temperature, are investigated using
molecular-dynamics simulations based on ion-ion pair potentials constructed
from a neutral pseudoatom model. Such pair potentials based on density
functional theory are parameter-free and depend directly on the electron
temperature and indirectly on the ion temperature, enabling efficient
computation of two-temperature properties. Comparison with ab initio
simulations and with other average-atom calculations for equilibrium aluminum
shows good agreement, justifying a study of quasi-equilibrium situations.
Analyzing the van Hove function, we find that ion-ion correlations vanish in a
time significantly smaller than the electron-ion relaxation time so that
dynamical properties have a physical meaning for the quasi-equilibrium state. A
significant increase in the speed of sound is predicted from the modification
of the dispersion relation of the ion acoustic mode as the electron temperature
is increased. The two-temperature equation of state including the free energy,
internal energy and pressure is also presented
Adiabatic Quantum State Manipulation of Single Trapped Atoms
We use microwave induced adiabatic passages for selective spin flips within a
string of optically trapped individual neutral Cs atoms. We
position-dependently shift the atomic transition frequency with a magnetic
field gradient. To flip the spin of a selected atom, we optically measure its
position and sweep the microwave frequency across its respective resonance
frequency. We analyze the addressing resolution and the experimental robustness
of this scheme. Furthermore, we show that adiabatic spin flips can also be
induced with a fixed microwave frequency by deterministically transporting the
atoms across the position of resonance.Comment: 4 pages, 4 figure
The Computational Power of Beeps
In this paper, we study the quantity of computational resources (state
machine states and/or probabilistic transition precision) needed to solve
specific problems in a single hop network where nodes communicate using only
beeps. We begin by focusing on randomized leader election. We prove a lower
bound on the states required to solve this problem with a given error bound,
probability precision, and (when relevant) network size lower bound. We then
show the bound tight with a matching upper bound. Noting that our optimal upper
bound is slow, we describe two faster algorithms that trade some state
optimality to gain efficiency. We then turn our attention to more general
classes of problems by proving that once you have enough states to solve leader
election with a given error bound, you have (within constant factors) enough
states to simulate correctly, with this same error bound, a logspace TM with a
constant number of unary input tapes: allowing you to solve a large and
expressive set of problems. These results identify a key simplicity threshold
beyond which useful distributed computation is possible in the beeping model.Comment: Extended abstract to appear in the Proceedings of the International
Symposium on Distributed Computing (DISC 2015
Precision preparation of strings of trapped neutral atoms
We have recently demonstrated the creation of regular strings of neutral
caesium atoms in a standing wave optical dipole trap using optical tweezers [Y.
Miroshnychenko et al., Nature, in press (2006)]. The rearrangement is realized
atom-by-atom, extracting an atom and re-inserting it at the desired position
with sub-micrometer resolution. We describe our experimental setup and present
detailed measurements as well as simple analytical models for the resolution of
the extraction process, for the precision of the insertion, and for heating
processes. We compare two different methods of insertion, one of which permits
the placement of two atoms into one optical micropotential. The theoretical
models largely explain our experimental results and allow us to identify the
main limiting factors for the precision and efficiency of the manipulations.
Strategies for future improvements are discussed.Comment: 25 pages, 18 figure
Sec24-Dependent Secretion Drives Cell-Autonomous Expansion of Tracheal Tubes in Drosophila
Epithelial tubes in developing organs, such as mammalian lungs and insect tracheae, need to expand their initially narrow lumina to attain their final, functional dimensions [1]. Despite its critical role for organ function, the cellular mechanism of tube expansion remains unclear. Tracheal tube expansion in Drosophila involves apical secretion and deposition of a luminal matrix [2,3,4,5], but the mechanistic role of secretion and the nature of forces involved in the process were not previously clear. Here we address the roles of cell-intrinsic and extrinsic processes in tracheal tube expansion. We identify mutations in the sec24 gene stenosis, encoding a cargo-binding subunit of the COPII complex [6,7,8]. Via genetic-mosaic analyses, we show that stenosis-dependent secretion drives tube expansion in a cell-autonomous fashion. Strikingly, single cells autonomously adjust both tube diameter and length by implementing a sequence of events including apical membrane growth, cell flattening, and taenidial cuticle formation. Known luminal components are not required for this process. Thus, a cell-intrinsic program, rather than nonautonomous extrinsic cues, controls the dimensions of tracheal tubes. These results indicate a critical role of membrane-associated proteins in the process and imply a mechanism that coordinates autonomous behaviors of individual cells within epithelial structures
Parity detection and entanglement with a Mach-Zehnder interferometer
A parity meter projects the state of two qubits onto two subspaces with
different parities, the states in each parity class being indistinguishable. It
has application in quantum information for its entanglement properties. In our
work we consider the electronic Mach-Zehnder interferometer (MZI) coupled
capacitively to two double quantum dots (DQDs), one on each arm of the MZI.
These charge qubits couple linearly to the charge in the arms of the MZI. A key
advantage of an MZI is that the qubits are well separated in distance so that
mutual interaction between them is avoided. Assuming equal coupling between
both DQDs and the arms and the same bias for each DQD, this setup usually
detects three different currents, one for the odd states and two for each even
state. Controlling the magnetic flux of the MZI, we can operate the MZI as a
parity meter: only two currents are measured at the output, one for each parity
class. In this configuration, the MZI acts as an ideal detector, its Heisenberg
efficiency being maximal. For a class of initial states, the initially
unentangled DQDs become entangled through the parity measurement process with
probability one.Comment: 9 pages, 2 figure
Spatially Resolved Star Formation History Along the Disk of M82 Using Multi-Band Photometric Data
We present the results on the star formation history and extinction in the
disk of M82 over spatial scales of 10" (~180 pc). Multi-band photometric data
covering from the far ultraviolet to the near infrared bands were fitted to a
grid of synthetic spectral energy distributions. We obtained distribution
functions of age and extinction for each of the 117 apertures analyzed, taking
into account observational errors through Monte-Carlo simulations. These
distribution functions were fitted with gaussian functions to obtain the mean
ages and extinctions along with errors on them. The analyzed zones include the
high surface brightness complexes defined by O'Connell & Mangano (1978). We
found that these complexes share the same star formation history and extinction
as the field stellar populations in the disk. There is an indication that the
stellar populations are marginally older at the outer disk (450 Myr at ~3 kpc)
as compared to the inner disk (100 Myr at 0.5 kpc). For the nuclear regions
(radius less than 500 pc), we obtained an age of less than 10 Myr. The results
obtained in this work are consistent with the idea that the 0.5-3 kpc part of
the disk of M82 formed around 90% of the stellar mass in a star-forming episode
that started around 450 Myr ago lasting for about 350 Myr. We found that field
stars are the major contributors to the flux over the spatial scales analyzed
in this study, with stellar cluster contribution being 7% in the nucleus and
0.7% in the disk.Comment: 19 pages, 14 figures. Accepted for publication in The Astrophysical
Journa
- …