20 research outputs found

    Program Review: UNK Science/Math Education M.S.Ed. Program

    Get PDF

    Photochemistry of Nitrous Acid and Nitrite Ion

    Get PDF
    Aqueous solutions of HONO (ranging from 0.010M to 0.057M) and NO2 (ranging from 0.025M to 0.035M) were each photolyzed with nm ultraviolet (UV) light. In the presence of benzene scavenger, DH radical intermediate was indicated by formation of p-nitrosophenol (PNP). Ultraviolet/visible (UV/vis) absorption spectra of photolyzed aqueous HONO/benzene solutions showed the presence of PNP by its characteristic absorption at 298 nm. UV/vis absorption spectra of photolyzed aqueous NO -benzene solutions showed no evidence of PNP formation. Other compounds such as scavengers were toluene, benzoic acid, and terephthalic acid. UV/vis spectra of photolyzed aqueous HOND/scavenger solutions showed an Int n e road peak in the 295-310 nm range, Indicating that the scavenger was hydroxylated by OH, formed from HONO photolytic dissociation, and subsequently nitrostated by reaction with excess HONO. Hydrugen peroxide, a known OH producer, was photolyzed in the presence of benzene to verify the proposed OH-scavenging sequence under varying pH condItions. UV/vis spectra showed evidence of hydrocybenzene formation upon photolysis. The thermal decomposition of HONO was studied and a kinetic order with respect to HONO, of 0.5+-0.5 was determined. Quantitative data concerning the photochem cal de omposition of HONO was too inconsistent to make reasonable comparisons to thermal decomposition data

    M–M Bond-Stretching Energy Landscapes for M_2(dimen)_(4)^(2+) (M = Rh, Ir; dimen = 1,8-Diisocyanomenthane) Complexes

    Get PDF
    Isomers of Ir_2(dimen)_(4)^(2+) (dimen = 1,8-diisocyanomenthane) exhibit different Ir–Ir bond distances in a 2:1 MTHF/EtCN solution (MTHF = 2-methyltetrahydrofuran). Variable-temperature absorption data suggest that the isomer with the shorter Ir–Ir distance is favored at room temperature [K = ~8; ΔH° = −0.8 kcal/mol; ΔS° = 1.44 cal mol^(–1) K^(–1)]. We report calculations that shed light on M_2(dimen)_(4)^(2+) (M = Rh, Ir) structural differences: (1) metal–metal interaction favors short distances; (2) ligand deformational-strain energy favors long distances; (3) out-of-plane (A_(2u)) distortion promotes twisting of the ligand backbone at short metal–metal separations. Calculated potential-energy surfaces reveal a double minimum for Ir_2(dimen)_(4)^(2+) (4.1 Å Ir–Ir with 0° twist angle and ~3.6 Å Ir–Ir with ±12° twist angle) but not for the rhodium analogue (4.5 Å Rh–Rh with no twisting). Because both the ligand strain and A_(2u) distortional energy are virtually identical for the two complexes, the strength of the metal–metal interaction is the determining factor. On the basis of the magnitude of this interaction, we obtain the following results: (1) a single-minimum (along the Ir–Ir coordinate), harmonic potential-energy surface for the triplet electronic excited state of Ir_2(dimen)_(4)^(2+) (R_(e,Ir–Ir) = 2.87 Å; F_(Ir–Ir) = 0.99 mdyn Å^(–1)); (2) a single-minimum, anharmonic surface for the ground state of Rh_2(dimen)_(4)^(2+) (R_(e,Rh–Rh) = 3.23 Å; F_(Rh–Rh) = 0.09 mdyn Å^(–1)); (3) a double-minimum (along the Ir–Ir coordinate) surface for the ground state of Ir_2(dimen)_(4)^(2+) (R_(e,Ir–Ir) = 3.23 Å; F_(Ir–Ir) = 0.16 mdyn Å^(–1))

    Non-vacuum Preparation of wse2 Thin Films via the Selenization of Hydrated Tungsten Oxide Prepared using Chemical Solution Methods

    Get PDF
    It is known that tungsten oxide may be reacted with selenium sources to form WSe2 but literature reports include processing steps that involve high temperatures, reducing atmospheres, and/or oxidative pre-treatments of tungsten oxide. In this work, we report a non-vacuum process for the fabrication of compositionally high quality WSe2 thin films via the selenization of tungsten oxide under milder conditions. Tungsten source materials were various hydrated WO3 and WO2.9 compounds that were prepared using chemical solution techniques. Resulting films were selenized using a two-stage heating profile (250 °C for 15 minutes and 550 °C for 30 minutes) under a static argon atmosphere. Effects of the starting tungsten oxide phase on WSe2 formation after single and double selenization cycles were investigated using Raman spectroscopy and X-ray diffraction (XRD). After two selenization cycles, hydrated WO3 was converted to (002)-oriented WSe2 that exhibits well-resolved peaks for E12g and A1g phonon modes. Only a single selenization cycle was required to convert amorphous WO2.9 to WSe2. All selenizations in this work were achieved in non-reducing atmospheres and at lower temperatures and shorter times than any non-laser-assisted processes reported for WO3-to-WSe2 conversions

    Non-vacuum Preparation of wse2 Thin Films via the Selenization of Hydrated Tungsten Oxide Prepared using Chemical Solution Methods

    Get PDF
    It is known that tungsten oxide may be reacted with selenium sources to form WSe2 but literature reports include processing steps that involve high temperatures, reducing atmospheres, and/or oxidative pre-treatments of tungsten oxide. In this work, we report a non-vacuum process for the fabrication of compositionally high quality WSe2 thin films via the selenization of tungsten oxide under milder conditions. Tungsten source materials were various hydrated WO3 and WO2.9 compounds that were prepared using chemical solution techniques. Resulting films were selenized using a two-stage heating profile (250 oC for 15 minutes and 550 oC for 30 minutes) under a static argon atmosphere. Effects of the starting tungsten oxide phase on WSe2 formation after single and double selenization cycles were investigated using Raman spectroscopy and X-ray diffraction (XRD). After two selenization cycles, hydrated WO3 was converted to (002)-oriented WSe2 that exhibits well-resolved peaks for E12g and A1g phonon modes. Only a single selenization cycle was required to convert amorphous WO2.9 to WSe2. All selenizations in this work were achieved in non-reducing atmospheres and at lower temperatures and shorter times than any non-laser-assisted processes reported for WO3-to-WSe2 conversions

    Structures of [M_2(dimen)_4](Y)_2 (M = Rh, Ir; dimen = 1,8-Diisocyanomenthane; Y = PF_6, Tetrakis[3,5-bis(trifluoromethyl)phenyl]borate, B(C_6H_5)_4) Crystals Featuring an Exceptionally Wide Range of Metal−Metal Distances and Dihedral Twist Angles

    Get PDF
    The binuclear complexes [M_2(dimen)_4](Y)_2 (M = Rh, Ir; dimen = 1,8-diisocyanomenthane; Y = PF_6, tetrakis[3,5-bis(trifluoromethyl)phenyl]borate), and B(C_6H_5)_4) have face-to-face structures with M−M distances between 3.60 and 4.48 Å, and square-planar unit twist angles between 0 and 17.2°. Ligand flexing and out-of-plane bending of the metal centers accommodate M−M distances longer than 3.9 Å; addition of a torsional deformation produces a twisted conformation for shorter M−M distances (<3.9 Å). Spectroscopic data indicate that there are two or more deformational isomers of Ir_2(dimen)_4^(2+) in solution

    IRON PYRITE NANOCRYSTALS

    Get PDF
    An apparatus includes a nanocrystal. The nanocrystal includes a core including FeS2; and a coating including a ligand component capable of chemically interacting with both an iron atom and a sulfur atom on a surface of the core

    Non-vacuum Preparation of wse2 Thin Films via the Selenization of Hydrated Tungsten Oxide Prepared using Chemical Solution Methods

    Get PDF
    It is known that tungsten oxide may be reacted with selenium sources to form WSe2 but literature reports include processing steps that involve high temperatures, reducing atmospheres, and/or oxidative pre-treatments of tungsten oxide. In this work, we report a non-vacuum process for the fabrication of compositionally high quality WSe2 thin films via the selenization of tungsten oxide under milder conditions. Tungsten source materials were various hydrated WO3 and WO2.9 compounds that were prepared using chemical solution techniques. Resulting films were selenized using a two-stage heating profile (250 °C for 15 minutes and 550 °C for 30 minutes) under a static argon atmosphere. Effects of the starting tungsten oxide phase on WSe2 formation after single and double selenization cycles were investigated using Raman spectroscopy and X-ray diffraction (XRD). After two selenization cycles, hydrated WO3 was converted to (002)-oriented WSe2 that exhibits well-resolved peaks for E12g and A1g phonon modes. Only a single selenization cycle was required to convert amorphous WO2.9 to WSe2. All selenizations in this work were achieved in non-reducing atmospheres and at lower temperatures and shorter times than any non-laser-assisted processes reported for WO3-to-WSe2 conversions
    corecore