883 research outputs found

    Bank of Canada makes another emergency cut to interest rate

    Get PDF

    Pulling the Group Together: The Role of the Social Identity Approach

    Get PDF
    First paragraph: How do coaches successfully pull a group together? This chapter focuses on the role and importance of creating and maintaining social identities for group functioning and performance. Research documenting the role and importance of social identities has increased considerably over recent years, with over 200 research articles published across a variety of psychological domains in 2012 alone (Haslam, 2014). Given the wealth of empirical studies available, we have chosen to focus on key research articles within our review of social identity literature to highlight the role and importance of social identities in coaching contexts. Ultimately, social identity researchers recognise that groups are dynamic and have the capacity to change individuals which means that groups and organisations are much more than an aggregation of their individual parts (Haslam, 2004). Therefore, the key to successfully pulling a group together from a social identity perspective lies in the understanding and promotion of a shared sense of social identity among group members. For a coach to understand their role in optimising group functioning and performance, the social identity approach to leadership (Haslam, Reicher, & Platow, 2011) contains four principles that can be implemented within coaching practice. This chapter will also explore each principle of social identity leadership for a coaching audience

    Magnetic resonance imaging as a biomarker in diabetic and HIV-associated peripheral neuropathy: A systematic review-based narrative

    Get PDF
    Background: Peripheral neuropathy can be caused by diabetes mellitus and HIV infection, and often leaves patients with treatment-resistant neuropathic pain. To better treat this condition, we need greater understanding of the pathogenesis, as well as objective biomarkers to predict treatment response. Magnetic resonance imaging (MRI) has a firm place as a biomarker for diseases of the central nervous system (CNS), but until recently has had little role for disease of the peripheral nervous system. Objectives: To review the current state-of-the-art of peripheral nerve MRI in diabetic and HIV symmetrical polyneuropathy. We used systematic literature search methods to identify all studies currently published, using this as a basis for a narrative review to discuss major findings in the literature. We also assessed risk of bias, as well as technical aspects of MRI and statistical analysis. Methods: Protocol was pre-registered on NIHR PROSPERO database. MEDLINE, Web of Science and EMBASE databases were searched from 1946 to 15th August 2020 for all studies investigating either diabetic or HIV neuropathy and MRI, focusing exclusively on studies investigating symmetrical polyneuropathy. The NIH quality assessment tool for observational and cross-sectional cohort studies was used for risk of bias assessment. Results: The search resulted in 18 papers eligible for review, 18 for diabetic neuropathy and 0 for HIV neuropathy. Risk of bias assessment demonstrated that studies generally lacked explicit sample size justifications, and some may be underpowered. Whilst most studies made efforts to balance groups for confounding variables (age, gender, BMI, disease duration), there was lack of consistency between studies. Overall, the literature provides convincing evidence that DPN is associated with larger nerve cross sectional area, T2-weighted hyperintense and hypointense lesions, evidence of nerve oedema on Dixon imaging, decreased fractional anisotropy and increased apparent diffusion coefficient compared with controls. Analysis to date is largely restricted to the sciatic nerve or its branches. Conclusions: There is emerging evidence that various structural MR metrics may be useful as biomarkers in diabetic polyneuropathy, and technique to other forms of peripheral neuropathy, including HIV neuropathy, would be of value

    ECOSSE: Estimating Carbon in Organic Soils - Sequestration and Emissions: Final Report

    Get PDF
    Background Climate change, caused by greenhouse gas ( GHG) emissions, is one of the most serious threats facing our planet, and is of concern at both UK and devolved administration levels. Accurate predictions for the effects of changes in climate and land use on GHG emissions are vital for informing land use policy. Models which are currently used to predict differences in soil carbon (C) and nitrogen (N) caused by these changes, have been derived from those based on mineral soils or deep peat. None of these models is entirely satisfactory for describing what happens to organic soils following land-use change. Reports of Scottish GHG emissions have revealed that approximately 15% of Scotland's total emissions come from land use changes on Scotland's high carbon soils; the figure is much lower for Wales. It is therefore important to reduce the major uncertainty in assessing the carbon store and flux from land use change on organic soils, especially those which are too shallow to be deep peats but still contain a large reserve of C. In order to predict the response of organic soils to external change we need to develop a model that reflects more accurately the conditions of these soils. The development of a model for organic soils will help to provide more accurate values of net change to soil C and N in response to changes in land use and climate and may be used to inform reporting to UKGHG inventories. Whilst a few models have been developed to describe deep peat formation and turnover, none have so far been developed suitable for examining the impacts of land-use and climate change on the types of organic soils often subject to land-use change in Scotland and Wales. Organic soils subject to land-use change are often (but not exclusively) characterised by a shallower organic horizon than deep peats (e.g. organo-mineral soils such as peaty podzols and peaty gleys). The main aim of the model developed in this project was to simulate the impacts of land-use and climate change in these types of soils. The model is, a) be driven by commonly available meteorological data and soil descriptions, b) able to simulate and predict C and N turnover in organic soils, c) able to predict the impacts of land-use change and climate change on C and N stores in organic soils in Scotland and Wales. In addition to developing the model, we have undertaken a number of other modelling exercises, literature searches, desk studies, data base exercises, and experimentation to answer a range of other questions associated with the responses of organic soils in Scotland and Wales to climate and land-use change. Aims of the ECOSSE project The aims of the study were: To develop a new model of C and N dynamics that reflects conditions in organic soils in Scotland and Wales and predicts their likely responses to external factors To identify the extent of soils that can be considered organic in Scotland and Wales and provide an estimate of the carbon contained within them To predict the contribution of CO 2, nitrous oxide and methane emissions from organic soils in Scotland and Wales, and provide advice on how changes in land use and climate will affect the C and N balance In order to fulfil these aims, the project was broken down into modules based on these objectives and the report uses that structure. The first aim is covered by module 2, the second aim by module 1, and the third aim by modules 3 to 8. Many of the modules are inter-linked. Objectives of the ECOSSE project The main objectives of the project were to: Describe the distribution of organic soils in Scotland and Wales and provide an estimate of the C contained in them Develop a model to simulate C and N cycling in organic soils and provide predictions as to how they will respond to land-use, management and climate change using elements of existing peat, mineral and forest soil models Provide predictive statements on the effects of land-use and climate change on organic soils and the relationships to GHG emissions, including CO 2, nitrous oxide and methane. Provide predictions on the effects of land use change and climate change on the release of Dissolved Organic Matter from organic soils Provide estimates of C loss from scenarios of accelerated erosion of organic soils Suggest best options for mitigating C and N loss from organic soils Provide guidelines on the likely effects of changing land-use from grazing or semi-natural vegetation to forestry on C and N in organic soils Use the land-use change data derived from the Countryside Surveys of Scotland and Wales to provide predictive estimates for changes to C and N balance in organic soils over time

    Analysis of variability in additive manufactured open cell porous structures

    Get PDF
    In this article, a novel method of analysing build consistency of additively manufactured open cell porous structures is presented. Conventionally, methods such as micro computed tomography or scanning electron microscopy imaging have been applied to the measurement of geometric properties of porous material; however, high costs and low speeds make them unsuitable for analysing high volumes of components. Recent advances in the image-based analysis of open cell structures have opened up the possibility of qualifying variation in manufacturing of porous material. Here, a photogrammetric method of measurement, employing image analysis to extract values for geometric properties, is used to investigate the variation between identically designed porous samples measuring changes in material thickness and pore size, both intra- and inter-build. Following the measurement of 125 samples, intra-build material thickness showed variation of ±12%, and pore size ±4% of the mean measured values across five builds. Inter-build material thickness and pore size showed mean ranges higher than those of intra-build, ±16% and ±6% of the mean material thickness and pore size, respectively. Acquired measurements created baseline variation values and demonstrated techniques suitable for tracking build deviation and inspecting additively manufactured porous structures to indicate unwanted process fluctuations. </jats:p

    Review of existing information on the interrelations between soil and climate change. (ClimSoil). Final report

    Get PDF
    Carbon stock in EU soils – The soil carbon stocks in the EU27 are around 75 billion tonnes of carbon (C); of this stock around 50% is located in Sweden, Finland and the United Kingdom (because of the vast area of peatlands in these countries) and approximately 20% is in peatlands, mainly in countries in the northern part of Europe. The rest is in mineral soils, again the higher amount being in northern Europe. 2. Soils sink or source for CO2 in the EU – Both uptake of carbon dioxide (CO2) through photosynthesis and plant growth and loss of CO2 through decomposition of organic matter from terrestrial ecosystems are significant fluxes in Europe. Yet, the net terrestrial carbon fluxes are typically 5-10 times smaller relative to the emissions from use of fossil fuel of 4000 Mt CO2 per year. 3. Peat and organic soils - The largest emissions of CO2 from soils are resulting from land use change and especially drainage of organic soils and amount to 20-40 tonnes of CO2 per hectare per year. The most effective option to manage soil carbon in order to mitigate climate change is to preserve existing stocks in soils, and especially the large stocks in peat and other soils with a high content of organic matter. 4. Land use and soil carbon – Land use and land use change significantly affects soil carbon stocks. On average, soils in Europe are most likely to be accumulating carbon on a net basis with a sink for carbon in soils under grassland and forest (from 0 - 100 billion tonnes of carbon per year) and a smaller source for carbon from soils under arable land (from 10 - 40 billion tonnes of carbon per year). Soil carbon losses occur when grasslands, managed forest lands or native ecosystems are converted to croplands and vice versa carbon stocks increase, albeit it slower, following conversion of cropland. 5. Soil management and soil carbon – Soil management has a large impact on soil carbon. Measures directed towards effective management of soil carbon are available and identified, and many of these are feasible and relatively inexpensive to implement. Management for lower nitrogen (N) emissions and lower C emissions is a useful approach to prevent trade off and swapping of emissions between the greenhouse gases CO2, methane (CH4) and nitrous oxide (N2O). 6. Carbon sequestration – Even though effective in reducing or slowing the build up of CO2 in the atmosphere, soil carbon sequestration is surely no ‘golden bullet’ alone to fight climate change due to the limited magnitude of its effect and its potential reversibility; it could, nevertheless, play an important role in climate mitigation alongside other measures, especially because of its immediate availability and relative low cost for 'buying' us time. 7. Effects of climate change on soil carbon pools – Climate change is expected to have an impact on soil carbon in the longer term, but far less an impact than does land use change, land use and land management. We have not found strong and clear evidence for either overall and combined positive of negative impact of climate change (atmospheric CO2, temperature, precipitation) on soil carbon stocks. Due to the relatively large gross exchange of CO2 between atmosphere and soils and the significant stocks of carbon in soils, relatively small changes in these large and opposing fluxes of CO2, i.e. as result of land use (change), land management and climate change, may have significant impact on our climate and on soil quality. 8. Monitoring systems for changes in soil carbon – Currently, monitoring and knowledge on land use and land use change in EU27 is inadequate for accurate calculation of changes in soil carbon contents. Systematic and harmonized monitoring across EU27 and across relevant land uses would allow for adequate representation of changes in soil carbon in reporting emissions from soils and sequestration in soils to the UNFCCC. 9. EU policies and soil carbon – Environmental requirements under the Cross Compliance requirement of CAP is an instrument that may be used to maintain SOC. Neither measures under UNFCCC nor those mentioned in the proposed Soil Framework Directive are expected to adversely impact soil C. EU policy on renewable energy is not necessarily a guarantee for appropriate (soil) carbon management

    Promoting shared meanings in group memberships: a social identity approach to leadership in sport

    Get PDF
    The purpose of this review is to demonstrate the applicability of a social identity approach to leadership in sporting contexts. A social identity approach to leadership contends that leaders and group members are connected through feeling a sense of belonging and emotional attachment to their group. The present review (1) outlines the theoretical underpinnings of social identity theory, (2) reflects on the four principles of social identity leadership and applies them to sport, (3) contrasts social identity leadership with current leadership theories, and (4) provides suggestions for future research investigating a social identity approach to leadership in sport. Accordingly, the review illustrates how an appreciation of the social context and group members’ values allow leaders to mobilise – enlist the motivation and abilities of – athletes to achieve the leader’s vision. A social identity approach to leadership has the potential to extend understanding of leadership in sport by emphasising the role of groups and context in leadership

    The effects of social identity and social identity content on cohesion, efficacy, and performance across a competitive rugby league season

    Get PDF
    Social identity (one's sense of belongingness to a group) and social identity content (what it means to belong to a group) are important psychological constructs for cognition and behaviour. Whilst some longitudinal social identity research exists, researchers have yet to explore the temporal effects of social identity content in sport. Across a competitive season, we therefore explored the main and interactive effects of social identity and two types of social identity content (results and friendships) on cohesion, self and team-level efficacy, and subjective team performance. Participants were 167 male rugby league athletes (Mage = 18.16 ± 0.44 years) drawn from all eight teams competing in a single English Premier Rugby League Division. At the start, middle, and end of their nine-week season, participants completed a series of measures. Multilevel modelling analyses found that social identity significantly and positively predicted all study outcomes amongst athletes, and self and team-level efficacy across time. As athletes’ social identity strengthened across the season, so too did self and team-level efficacy. Also at the time-level, the interaction between social identity and friendships content significantly and positively predicted team-level efficacy. In other words, social identity was important for team-level efficacy throughout the season when friendships content was high. Overall, our findings suggest that social identity is important for cohesion, efficacy, and team performance. The lack of interaction effects between social identity and results/friendships contents may be attributable to athletes adopting social creativity by altering the importance placed on results and friendships throughout the season
    • …
    corecore