102 research outputs found

    The Drosophila Anion Exchanger (DAE) lacks a detectable interaction with the spectrin cytoskeleton

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Current models suggest that the spectrin cytoskeleton stabilizes interacting ion transport proteins at the plasma membrane. The human erythrocyte anion exchanger (AE1) was the first membrane transport protein found to be associated with the spectrin cytoskeleton. Here we evaluated a conserved anion exchanger from Drosophila (DAE) as a marker for studies of the downstream effects of spectrin cytoskeleton mutations.</p> <p>Results</p> <p>Sequence comparisons established that DAE belongs to the SLC4A1-3 subfamily of anion exchangers that includes human AE1. Striking sequence conservation was observed in the C-terminal membrane transport domain and parts of the N-terminal cytoplasmic domain, but not in the proposed ankyrin-binding site. Using an antibody raised against DAE and a recombinant transgene expressed in <it>Drosophila </it>S2 cells DAE was shown to be a 136 kd plasma membrane protein. A major site of expression was found in the stomach acid-secreting region of the larval midgut. DAE codistributed with an infolded subcompartment of the basal plasma membrane of interstitial cells. However, spectrin did not codistribute with DAE at this site or in anterior midgut cells that abundantly expressed both spectrin and DAE. Ubiquitous knockdown of DAE with dsRNA eliminated antibody staining and was lethal, indicating that DAE is an essential gene product in <it>Drosophila</it>.</p> <p>Conclusions</p> <p>Based on the lack of colocalization and the lack of sequence conservation at the ankyrin-binding site, it appears that the well-characterized interaction between AE1 and the spectrin cytoskeleton in erythrocytes is not conserved in <it>Drosophila</it>. The results establish a pattern in which most of the known interactions between the spectrin cytoskeleton and the plasma membrane in mammals do not appear to be conserved in <it>Drosophila</it>.</p

    Differences in genotype and virulence among four multidrug-resistant <i>Streptococcus pneumoniae</i> isolates belonging to the PMEN1 clone

    Get PDF
    We report on the comparative genomics and characterization of the virulence phenotypes of four &lt;i&gt;S. pneumoniae&lt;/i&gt; strains that belong to the multidrug resistant clone PMEN1 (Spain&lt;sup&gt;23F&lt;/sup&gt; ST81). Strains SV35-T23 and SV36-T3 were recovered in 1996 from the nasopharynx of patients at an AIDS hospice in New York. Strain SV36-T3 expressed capsule type 3 which is unusual for this clone and represents the product of an in vivo capsular switch event. A third PMEN1 isolate - PN4595-T23 - was recovered in 1996 from the nasopharynx of a child attending day care in Portugal, and a fourth strain - ATCC700669 - was originally isolated from a patient with pneumococcal disease in Spain in 1984. We compared the genomes among four PMEN1 strains and 47 previously sequenced pneumococcal isolates for gene possession differences and allelic variations within core genes. In contrast to the 47 strains - representing a variety of clonal types - the four PMEN1 strains grouped closely together, demonstrating high genomic conservation within this lineage relative to the rest of the species. In the four PMEN1 strains allelic and gene possession differences were clustered into 18 genomic regions including the capsule, the blp bacteriocins, erythromycin resistance, the MM1-2008 prophage and multiple cell wall anchored proteins. In spite of their genomic similarity, the high resolution chinchilla model was able to detect variations in virulence properties of the PMEN1 strains highlighting how small genic or allelic variation can lead to significant changes in pathogenicity and making this set of strains ideal for the identification of novel virulence determinant

    Speech delays and behavioral problems are the predominant features in individuals with developmental delays and 16p11.2 microdeletions and microduplications

    Get PDF
    Microdeletions and microduplications encompassing a ~593-kb region of 16p11.2 have been implicated as one of the most common genetic causes of susceptibility to autism/autism spectrum disorder (ASD). We report 45 microdeletions and 32 microduplications of 16p11.2, representing 0.78% of 9,773 individuals referred to our laboratory for microarray-based comparative genomic hybridization (aCGH) testing for neurodevelopmental and congenital anomalies. The microdeletion was de novo in 17 individuals and maternally inherited in five individuals for whom parental testing was available. Detailed histories of 18 individuals with 16p11.2 microdeletions were reviewed; all had developmental delays with below-average intelligence, and a majority had speech or language problems or delays and various behavioral problems. Of the 16 individuals old enough to be evaluated for autism, the speech/behavior profiles of seven did not suggest the need for ASD evaluation. Of the remaining nine individuals who had speech/behavior profiles that aroused clinical suspicion of ASD, five had formal evaluations, and three had PDD-NOS. Of the 19 microduplications with parental testing, five were de novo, nine were maternally inherited, and five were paternally inherited. A majority with the microduplication had delayed development and/or specific deficits in speech or language, though these features were not as consistent as seen with the microdeletions. This study, which is the largest cohort of individuals with 16p11.2 alterations reported to date, suggests that 16p11.2 microdeletions and microduplications are associated with a high frequency of cognitive, developmental, and speech delay and behavior abnormalities. Furthermore, although features associated with these alterations can be found in individuals with ASD, additional factors are likely required to lead to the development of ASD

    Tailor-Made Zinc-Finger Transcription Factors Activate FLO11 Gene Expression with Phenotypic Consequences in the Yeast Saccharomyces cerevisiae

    Get PDF
    Cys2His2 zinc fingers are eukaryotic DNA-binding motifs, capable of distinguishing different DNA sequences, and are suitable for engineering artificial transcription factors. In this work, we used the budding yeast Saccharomyces cerevisiae to study the ability of tailor-made zinc finger proteins to activate the expression of the FLO11 gene, with phenotypic consequences. Two three-finger peptides were identified, recognizing sites from the 5′ UTR of the FLO11 gene with nanomolar DNA-binding affinity. The three-finger domains and their combined six-finger motif, recognizing an 18-bp site, were fused to the activation domain of VP16 or VP64. These transcription factor constructs retained their DNA-binding ability, with the six-finger ones being the highest in affinity. However, when expressed in haploid yeast cells, only one three-finger recombinant transcription factor was able to activate the expression of FLO11 efficiently. Unlike in the wild-type, cells with such transcriptional activation displayed invasive growth and biofilm formation, without any requirement for glucose depletion. The VP16 and VP64 domains appeared to act equally well in the activation of FLO11 expression, with comparable effects in phenotypic alteration. We conclude that the functional activity of tailor-made transcription factors in cells is not easily predicted by the in vitro DNA-binding activity

    Rare copy number variation in cerebral palsy

    Get PDF
    As per publisher: published online 22 May 2013Recent studies have established the role of rare copy number variants (CNVs) in several neurological disorders but the contribution of rare CNVs to cerebral palsy (CP) is not known. Fifty Caucasian families having children with CP were studied using two microarray designs. Potentially pathogenic, rare (<1% population frequency) CNVs were identified, and their frequency determined, by comparing the CNVs found in cases with 8329 adult controls with no known neurological disorders. Ten of the 50 cases (20%) had rare CNVs of potential relevance to CP; there were a total of 14 CNVs, which were observed in <0.1% (<8/8329) of the control population. Eight inherited from an unaffected mother: a 751-kb deletion including FSCB, a 1.5-Mb duplication of 7q21.13, a 534-kb duplication of 15q11.2, a 446-kb duplication including CTNND2, a 219-kb duplication including MCPH1, a 169-kb duplication of 22q13.33, a 64-kb duplication of MC2R, and a 135-bp exonic deletion of SLC06A1. Three inherited from an unaffected father: a 386-kb deletion of 12p12.2-p12.1, a 234-kb duplication of 10q26.13, and a 4-kb exonic deletion of COPS3. The inheritance was unknown for three CNVs: a 157-bp exonic deletion of ACOX1, a 693-kb duplication of 17q25.3, and a 265-kb duplication of DAAM1. This is the first systematic study of CNVs in CP, and although it did not identify de novo mutations, has shown inherited, rare CNVs involving potentially pathogenic genes and pathways requiring further investigation.Gai McMichael, Santhosh Girirajan, Andres Moreno-De-Luca, Jozef Gecz, Chloe Shard, Lam Son Nguyen, Jillian Nicholl, Catherine Gibson, Eric Haan, Evan Eichler, Christa Lese Martin and Alastair MacLenna

    A Genome-Wide Approach to Discovery of Small RNAs Involved in Regulation of Virulence in Vibrio cholerae

    Get PDF
    Small RNAs (sRNAs) are becoming increasingly recognized as important regulators in bacteria. To investigate the contribution of sRNA mediated regulation to virulence in Vibrio cholerae, we performed high throughput sequencing of cDNA generated from sRNA transcripts isolated from a strain ectopically expressing ToxT, the major transcriptional regulator within the virulence gene regulon. We compared this data set with ToxT binding sites determined by pulldown and deep sequencing to identify sRNA promoters directly controlled by ToxT. Analysis of the resulting transcripts with ToxT binding sites in cis revealed two sRNAs within the Vibrio Pathogenicity Island. When deletions of these sRNAs were made and the resulting strains were competed against the parental strain in the infant mouse model of V. cholerae colonization, one, TarB, displayed a variable colonization phenotype dependent on its physiological state at the time of inoculation. We identified a target of TarB as the mRNA for the secreted colonization factor, TcpF. We verified negative regulation of TcpF expression by TarB and, using point mutations that disrupted interaction between TarB and tpcF mRNA, showed that loss of this negative regulation was primarily responsible for the colonization phenotype observed in the TarB deletion mutant

    Dominant negative knockout of p53 abolishes ErbB2-dependent apoptosis and permits growth acceleration in human breast cancer cells

    Get PDF
    We previously reported that the ErbB2 oncoprotein prolongs and amplifies growth factor signalling by impairing ligand-dependent downregulation of hetero-oligomerised epidermal growth factor receptors. Here we show that treatment of A431 cells with different epidermal growth factor receptor ligands can cause growth inhibition to an extent paralleling ErbB2 tyrosine phosphorylation. To determine whether such growth inhibition signifies an interaction between the cell cycle machinery and ErbB2-dependent alterations of cell signalling kinetics, we used MCF7 breast cancer cells (which express wild-type p53) to create transient and stable ErbB2 transfectants (MCF7-B2). Compared with parental cells, MCF7-B2 cells are characterised by upregulation of p53, p21WAF and Myc, downregulation of Bcl2, and apoptosis. In contrast, MCF7-B2 cells co-transfected with dominant negative p53 (MCF7-B2/Δp53) exhibit reduced apoptosis and enhanced growth relative to both parental MCF7-B2 and control cells. These data imply that wild-type p53 limits survival of ErbB2-overexpressing breast cancer cells, and suggest that signals of varying length and/or intensity may evoke different cell outcomes depending upon the integrity of cell cycle control genes. We submit that acquisition of cell cycle control defects may play a permissive role in ErbB2 upregulation, and that the ErbB2 overexpression phenotype may in turn select for the survival of cells with p53 mutations or other tumour suppressor gene defects

    Modulation of Human Mesenchymal Stem Cell Immunogenicity through Forced Expression of Human Cytomegalovirus US Proteins

    Get PDF
    BACKGROUND: Mesenchymal stem cells (MSC) are promising candidates for cell therapy, as they migrate to areas of injury, differentiate into a broad range of specialized cells, and have immunomodulatory properties. However, MSC are not invisible to the recipient's immune system, and upon in vivo administration, allogeneic MSC are able to trigger immune responses, resulting in rejection of the transplanted cells, precluding their full therapeutic potential. Human cytomegalovirus (HCMV) has developed several strategies to evade cytotoxic T lymphocyte (CTL) and Natural Killer (NK) cell recognition. Our goal is to exploit HCMV immunological evasion strategies to reduce MSC immunogenicity. METHODOLOGY/PRINCIPAL FINDINGS: We genetically engineered human MSC to express HCMV proteins known to downregulate HLA-I expression, and investigated whether modified MSC were protected from CTL and NK attack. Flow cytometric analysis showed that amongst the US proteins tested, US6 and US11 efficiently reduced MSC HLA-I expression, and mixed lymphocyte reaction demonstrated a corresponding decrease in human and sheep mononuclear cell proliferation. NK killing assays showed that the decrease in HLA-I expression did not result in increased NK cytotoxicity, and that at certain NK∶MSC ratios, US11 conferred protection from NK cytotoxic effects. Transplantation of MSC-US6 or MSC-US11 into pre-immune fetal sheep resulted in increased liver engraftment when compared to control MSC, as demonstrated by qPCR and immunofluorescence analyses. CONCLUSIONS AND SIGNIFICANCE: These data demonstrate that engineering MSC to express US6 and US11 can be used as a means of decreasing recognition of MSC by the immune system, allowing higher levels of engraftment in an allogeneic transplantation setting. Since one of the major factors responsible for the failure of allogeneic-donor MSC to engraft is the mismatch of HLA-I molecules between the donor and the recipient, MSC-US6 and MSC-US11 could constitute an off-the-shelf product to overcome donor-recipient HLA-I mismatch
    corecore