46 research outputs found

    Antibiotic resistance trends of ESKAPE pathogens in Kwazulu-Natal, South Africa: A five-year retrospective analysis.

    Get PDF
    BACKGROUND: To combat antimicrobial resistance, the World Health Organization developed a global priority pathogen list of antibiotic-resistant bacteria for prioritisation of research and development of new, effective antibiotics. OBJECTIVE: This study describes a five-year resistance trend analysis of the ESKAPE pathogens: Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp., from Kwazulu-Natal, South Africa. METHODS: This retrospective study used National Health Laboratory Services data on 64 502 ESKAPE organisms isolated between 2011 and 2015. Susceptibility trends were ascertained from minimum inhibitory concentrations and interpreted using Clinical and Laboratory Standards Institute guidelines. RESULTS: S. aureus was most frequently isolated (n = 24, 495, 38%), followed by K. pneumoniae (n = 14, 282, 22%). Decreasing rates of methicillin-resistant S. aureus (28% to 18%, p 70%). CONCLUSION: This study describes the magnitude of antimicrobial resistance in KwaZulu-Natal and provides a South African perspective on antimicrobial resistance in the global priority pathogen list, signalling the need for initiation or enhancement of antimicrobial stewardship and infection control measures locally

    Diversity and proliferation of metallo-β-lactamases : a clarion call for clinically effective metallo-β-lactamase inhibitors

    Get PDF
    The worldwide proliferation of life-threatening metallo-β-lactamase (MBLs)-producing Gram-negative bacteria is a serious concern to public health. MBLs are compromising the therapeutic efficacies of β-lactams, particularly carbapenems, which are last-resort antibiotics indicated for various multidrug-resistant bacterial infections. Inhibiting enzymes mediating antibiotic resistance in bacteria is one of the major promising means in overcoming bacterial resistance. Compounds having potential MBLs-inhibitory activity have been reported, but none are currently under clinical trials. The need for developing safe and efficient MBL inhibitors (MBLIs) is obvious, particularly with the continuous spread of MBLs worldwide. In this review, the emergence and escalation of MBLs in Gram-negative bacteria are dicussed. The relationship between different class B β-lactamases identified up to 2017 are represented by a phylogenetic tree and summarized. On the other hand, approved and/or clinical-phase serine β-lactamase inhibitors are recapitulated to reflect the successful advances made in developing class A β-lactamase inhibitors. Reported MBLIs, their inhibitory properties and purported mode of inhibition are herein delineated. Insights into MBLs' structural variations and the challenges involved in developing potent MBLIs are also elucidated and discussed. Currently, natural products and MBL-resistant β-lactam analogues are the most promising agents that can become clinically efficient MBLIs. A deeper comprehension of the mechanism of action and activity spectrum of the various MBLs and their inhibitors will serve as a bedrock for further investigations that can result in clinically useful MBLIs to curb this global menace.http://aem.asm.org2019-03-01hj2018Medical Microbiolog

    Genomic analysis of two drug-resistant clinical Morganella morganii strains isolated from UTI patients in Pretoria, South Africa

    Get PDF
    Morganella morganii is an opportunistic bacterial pathogen of the Enterobacteriaceae family that is occasionally isolated from clinical (animal and human) specimens with varying resistance profiles. Detailed genomic analyses of drug‐resistant M. morganii strains are relatively limited, particularly in Africa, which is also due to their relatively low isolation rates from clinical settings. Here we report on two multidrug‐resistant clinical M. morganii isolates from urine specimens of two hospitalized patients in South Africa who presented with urinary tract infections in 2013. The isolates, M006 and E042, were only susceptible to carbapenems, amikacin and tigecycline. One strain, M006, had a novel class 1 integron, ln1484, associated with aadA7, sul1and gcuD gene cassettes and a Col3M plasmid replicase gene. The ln1484 intI1:aadA7:sul1 genes were bracketed by a TnAs3 composite transposon while a tet(B) gene was found on an IS4 family transposon. The rare blaDHA‐4 and blaDHA‐1 AmpC β‐lactamase genes were identified on the isolates’ chromosome. The isolates were phylogenetically distant and closely related to other international strains, suggesting that they were not obtained from a single epidemiological source. Further molecular surveillance is necessary to establish the prevalence of these MDR strains in the tertiary hospital. Moreover antibiotic stewardship and antibiotic sensitivity testing of all clinical isolates should be undertaken after empirical treatment to inform tailored therapy as well as reduce escalation of resistance and associated morbidities and mortalities.Supplementary Data S1. Metadata of isolates included in phylogenomic analysis.The National Health Laboratory Services (Grant No.: 94445), the University of Pretoria (Grant No.: A0702) and the South African Medical Research Council.https://onlinelibrary.wiley.com/journal/1472765x2021-01-01hj2020Medical Microbiolog

    High prevalence of multidrug resistant ESBL- and plasmid mediated AmpC-producing clinical isolates of Escherichia coli at Maputo Central Hospital, Mozambique

    Get PDF
    Background: Epidemiological data of cephalosporin-resistant Enterobacterales in Sub-Saharan Africa is still restricted,and in particular in Mozambique. The aim of this study was to detect and characterize extended-spectrum β-lactamase (ESBL) - and plasmid-mediated AmpC (pAmpC)-producing clinical strains of Escherichia coli at Maputo Central Hospital (MCH), a 1000-bed reference hospital in Maputo, Mozambique. Methods: A total of 230 clinical isolates of E. coli from urine (n = 199) and blood cultures (n = 31) were collected at MCH during August–November 2015. Antimicrobial susceptibility testing was performed by the disc diffusion method and interpreted according to EUCAST guidelines. Isolates with reduced susceptibility to 3rd generation cephalosporins were examined further; phenotypically for an ESBL−/AmpC-phenotype by combined disc methods and genetically for ESBL- and pAmpC-encoding genes by PCR and partial amplicon sequencing as well as genetic relatedness by ERIC-PCR. Results: A total of 75 isolates with reduced susceptibility to cefotaxime and/or ceftazidime (n = 75) from urine (n = 58/199; 29%) and blood (n = 17/31; 55%) were detected. All 75 isolates were phenotypically ESBL-positive and 25/75 (33%) of those also expressed an AmpC-phenotype. ESBL-PCR and amplicon sequencing revealed a majority of blaCTX-M (n = 58/75; 77%) dominated by blaCTX-M-15. All AmpC-phenotype positive isolates (n = 25/75; 33%) scored positive for one or more pAmpC-genes dominated by blaMOX/FOX. Multidrug resistance (resistance ≥ three antibiotic classes) was observed in all the 75 ESBL-positive isolates dominated by resistance to trimethoprimsulfamethoxazole, ciprofloxacin and gentamicin. ERIC-PCR revealed genetic diversity among strains with minor clusters indicating intra-hospital spread. Conclusion: We have observed a high prevalence of MDR pAmpC- and/or ESBL-producing clinical E. coli isolates with FOX/MOX and CTX-Ms as the major β-lactamase types, respectively. ERIC-PCR analyses revealed genetic diversity and some clusters indicating within-hospital spread. The overall findings strongly support the urgent need for accurate and rapid diagnostic services to guide antibiotic treatment and improved infection control measures

    Reducing antibiotic prescribing and addressing the global problem of antibiotic resistance by targeted hygiene in the home and everyday life settings: A position paper

    Get PDF
    Antimicrobial resistance (AMR) continues to threaten global health. Although global and national AMR action plans are in place, infection prevention and control is primarily discussed in the context of health care facilities with home and everyday life settings barely addressed. As seen with the recent global SARS-CoV-2 pandemic, everyday hygiene measures can play an important role in containing the threat from infectious microorganisms. This position paper has been developed following a meeting of global experts in London, 2019. It presents evidence that home and community settings are important for infection transmission and also the acquisition and spread of AMR. It also demonstrates that the targeted hygiene approach offers a framework for maximizing protection against colonization and infections, thereby reducing antibiotic prescribing and minimizing selection pressure for the development of antibiotic resistance. If combined with the provision of clean water and sanitation, targeted hygiene can reduce the circulation of resistant bacteria in homes and communities, regardless of a country\u27s Human Development Index (overall social and economic development). Achieving a reduction of AMR strains in health care settings requires a mirrored reduction in the community. The authors call upon national and international policy makers, health agencies, and health care professionals to further recognize the importance of targeted hygiene in the home and everyday life settings for preventing and controlling infection, in a unified quest to tackle AMR

    Cotrimoxazole guidelines for infants who are HIV-exposed but uninfected : a call for a public health and ethics approach to the evidence

    Get PDF
    WHO first recommended cotrimoxazole prophylaxis for all infants who are HIV-exposed but uninfected (HEU) in 2000, given the ability of this treatment to prevent mortality from pneumocystis pneumonia in adults living with HIV. Over the last 21 years, evidence has been generated from the use of cotrimoxazole prophylaxis in infants who are HEU, including two randomised controlled trials, which have shown no clinical benefit and an increase in antibiotic resistance and microbiome dysbiosis. Additionally, improvements in health care over the last two decades in terms of antiretroviral treatment and prophylaxis for mothers and infants, and notably improved vaccination programmes, have substantially reduced the risk of HIV transmission and the overall morbidity and mortality of infants who are HEU from pneumonia and diarrhoeal diseases. Here, we highlight these changes in health care alongside the unchanged cotrimoxazole prophylaxis guidelines and call for a change in these guidelines on the basis of a public health and ethics approach.www.thelancet.com/lancetgham2023Obstetrics and GynaecologyPaediatrics and Child Healt

    1,4,7-Triazacyclononane restores the activity of β-lactam antibiotics against metallo-β-lactamase-producing Enterobacteriaceae : exploration of potential metallo-β-lactamase inhibitors

    Get PDF
    Metallo-β-lactamase (MBL)-producing Enterobacteriaceae are of grave clinical concern, particularly as there are no metallo-β-lactamase inhibitors approved for clinical use. The discovery and development of MBL inhibitors to restore the efficacy of available β-lactams are thus imperative. We investigated a zinc-chelating moiety, 1,4,7-triazacyclononane (TACN), for its inhibitory activity against clinical carbapenem-resistant Enterobacteriaceae. MICs, minimum bactericidal concentrations (MBCs), the serum effect, fractional inhibitory concentration indexes, and time-kill kinetics were determined using broth microdilution techniques according to Clinical and Laboratory Standards Institute (CSLI) guidelines. Enzyme kinetic parameters and the cytotoxic effects of TACN were determined using spectrophotometric assays. The interactions of the enzyme-TACN complex were investigated by computational studies. Meropenem regained its activity against carbapenemase-producing Enterobacteriaceae, with the MIC decreasing from between 8 and 64 mg/liter to 0.03 mg/liter in the presence of TACN. The TACN-meropenem combination showed bactericidal effects with an MBC/MIC ratio of ≤4, and synergistic activity was observed. Human serum effects on the MICs were insignificant, and TACN was found to be noncytotoxic at concentrations above the MIC values. Computational studies predicted that TACN inhibits MBLs by targeting their catalytic active-site pockets. This was supported by its inhibition constant (Ki), which was 0.044 μM, and its inactivation constant (Kinact), which was 0.0406 min−1, demonstrating that TACN inhibits MBLs efficiently and holds promise as a potential inhibitor.The South African National Research Foundation (grant no. 85595 awarded to S. Y. Essack as incentive funding for rated researchers) and the College of Health Sciences, University of Kwa-Zulu Natal.http://aem.asm.org2019-08-01hj2019Medical Microbiolog

    Exploiting genomics for antimicrobial resistance surveillance at One Health interfaces.

    Get PDF
    The intersection of human, animal, and ecosystem health at One Health interfaces is recognised as being of key importance in the evolution and spread of antimicrobial resistance (AMR) and represents an important, and yet rarely realised opportunity to undertake vital AMR surveillance. A working group of international experts in pathogen genomics, AMR, and One Health convened to take part in a workshop series and online consultation focused on the opportunities and challenges facing genomic AMR surveillance in a range of settings. Here we outline the working group's discussion of the potential utility, advantages of, and barriers to, the implementation of genomic AMR surveillance at One Health interfaces and propose a series of recommendations for addressing these challenges. Embedding AMR surveillance at One Health interfaces will require the development of clear beneficial use cases, especially in low-income and middle-income countries. Evidence of directionality, risks to human and animal health, and potential trade implications were also identified by the working group as key issues. Addressing these challenges will be vital to enable genomic surveillance technology to reach its full potential for assessing the risk of transmission of AMR between the environment, animals, and humans at One Health interfaces.
    corecore