23 research outputs found

    Estrategias terapéuticas basadas en micro y nanoemulsiones para el tratamiento del Alzheimer y enfermedades inflamatorias de la piel

    Get PDF
    [eng] Donepezil (DPZ) is one of the most widely prescribed drugs to treat the neuropsychiatric symptoms of Alzheimer's disease (AD) which are commercially available in oral tablet form. However, these can lead to inconveniences, especially among geriatric patients or those who are in advanced stages of the disease. In addition to this, there are marked disadvantages of the oral route, including difficulties in crossing the blood-brain barrier. The intranasal route presents an alternative due to its direct connection to the brain, which could increase the bioavailability of the drug. On the other hand, pioglitazone (PGZ) is a peroxisome proliferator-activated receptor γ (PPAR-γ) agonist used to treat type 2 diabetes mellitus. There is mounting scientific evidence of the anti-inflammatory effect of PGZ which suggests it as a promising candidate for the treatment of inflammatory disorders. The incorporation of these drugs in micro- and nanoemulsions could be used as a strategy to facilitate their administration. Based on these findings, the aim of this thesis was to design, develop and characterize intranasal DPZ micro- and nanoemulsions for the treatment of AD, as well as topical PGZ nanoemulsions for the treatment of inflammatory skin diseases. Two PGZ nanoemulsions (PGZ-NE and PGZ-NE2) along with one microemulsion and two nanoemulsions of DPZ (DPZ-ME, DPZ-NE, and DPZ-PNE) were formulated by constructing pseudo-ternary phase diagrams. All formulations were physically stable with spherical nanodroplets distributed uniformly in the system. The rheological analysis confirmed the Newtonian behavior in four formulations, while DPZ-PNE presented a pseudoplastic behavior. The five formulations were able to release the drug following a hyperbolic kinetic model. DPZ exhibited greater permeation through the porcine nasal mucosa from microemulsion compared to nanoemulsions, possibly due to its higher content of surfactants and cosurfactants. PGZ-NE and PGZ-NE2 favored the passage of the drug through the stratum corneum and promoted its retention in the skin thereby guaranteeing a local effect, especially for PGZ-NE2. The tolerance results demonstrated the biocompatibility and suitability of the formulations for intranasal or dermal administration. Finally, PGZ-NE treatment inhibited approximately 44% of inflammation, significantly decreased the expression of proinflammatory cytokines IL-6, IL-1β, and TNF-α, and counteracted histopathological alterations in acute inflammation assays, while PGZ-NE2 demonstrated efficacy in the treatment of atopic dermatitis, exhibiting reduction of skin lesions, restoration of elasticity and biomechanical properties of the skin, as well as reduction in the expression of proinflammatory cytokines associated with the pathophysiology of the disease. In conclusion, the obtained results encourage further clinical research into new therapeutic indications for PGZ as well as the use of intranasal-administered DPZ micro- and nanoemulsions to increase the bioavailability of the drug in the brain and facilitate its administration

    Comparative study of ex vivo transmucosal permeation of Pioglitazone nanoparticles for the treatment of Alzheimer's disease

    Get PDF
    Pioglitazone has been reported in the literature to have a substantial role in the improvement of overall cognition in a mouse model. With this in mind, the aim of this study was to determine the most efficacious route for the administration of Pioglitazone nanoparticles (PGZ-NPs) in order to promote drug delivery to the brain for the treatment of Alzheimer's disease. PGZ-loaded NPs were developed by the solvent displacement method. Parameters such as mean size, polydispersity index, zeta potential, encapsulation efficacy, rheological behavior, and short-term stability were evaluated. Ex vivo permeation studies were then carried out using buccal, sublingual, nasal, and intestinal mucosa. PGZ-NPs with a size around of 160 nm showed high permeability in all mucosae. However, the permeation and prediction parameters revealed that lag-time and vehicle/tissue partition coefficient of nasal mucosa were significantly lower than other studied mucosae, while the diffusion coefficient and theoretical steady-state plasma concentration of the drug were higher, providing biopharmaceutical results that reveal more favorable PGZ permeation through the nasal mucosa. The results suggest that nasal mucosa represents an attractive and non-invasive pathway for PGZ-NPs administration to the brain since the drug permeation was demonstrated to be more favorable in this tissue. View Full-Text Keywords: nanoparticles; pioglitazone; PLGA-PEG; transmucosal permeations; Alzheimer's diseas

    Formulation Strategies to Improve Nose-to-Brain Delivery of Donepezil

    Get PDF
    Donepezil (DPZ) is widely used in the treatment of Alzheimer's disease in tablet form for oral administration. The pharmacological efficacy of this drug can be enhanced by the use of intranasal administration because this route makes bypassing the blood-brain barrier (BBB) possible. The aim of this study was to develop a nanoemulsion (NE) as well as a nanoemulsion with a combination of bioadhesion and penetration enhancing properties (PNE) in order to facilitate the transport of DPZ from nose-to-brain. Composition of NE was established using three pseudo-ternary diagrams and PNE was developed by incorporating Pluronic F-127 to the aqueous phase. Parameters such as physical properties, stability, in vitro release profile, and ex vivo permeation were determined for both formulations. The tolerability was evaluated by in vitro and in vivo models. DPZ-NE and DPZ-PNE were transparent, monophasic, homogeneous, and physically stable with droplets of nanometric size and spherical shape. DPZ-NE showed Newtonian behavior whereas a shear thinning (pseudoplastic) behavior was observed for DPZ-PNE. The release profile of both formulations followed a hyperbolic kinetic. The permeation and prediction parameters were significantly higher for DPZ-PNE, suggesting the use of polymers to be an effective strategy to improve the bioadhesion and penetration of the drug through nasal mucosa, which consequently increase its bioavailability

    Characterization and In Vivo Anti-Inflammatory Efficacy of Copal (Dacryodes peruviana (Loes.) H.J. Lam) Essential Oil

    Full text link
    Essential oils are natural aromatic substances that contain complex mixtures of many volatile compounds frequently used in pharmaceutical and cosmetic industries. Dacryodes peruviana (Loes.) H.J. Lam is a native species from Ecuador whose anti-inflammatory activity has not been previously reported, thus the aim of this study was to evaluate the anti-inflammatory activity of D. peruviana essential oil. To that end, essential oil from D. peruviana fruits was isolated by hydrodistillation and characterized physically and chemically. The tolerance of the essential oil was analyzed by cytotoxicity studies using human keratinocytes. The anti-inflammatory activity was evaluated by an arachidonic acid-induced edema model in mouse ear. The predominant compounds in D. peruviana essential oil were α-phellandrene, limonene, and α-pinene, with the three compounds reaching approximately 83% of the total composition. Tolerance studies showed high biocompatibility of this essential oil with human keratinocytes. In vivo studies demonstrated a moisturizing effect and an alleviation of several events occurred during the inflammatory process after topical treatment with D. peruviana essential oil such as decline in skin edema; reduction in leukocytic infiltrate; and decrease in inflammatory cytokines TNFα, IL-8, IL-17A, and IL-23. Therefore, this essential oil could be an attractive treatment for skin inflammation

    Topical Pioglitazone Nanoformulation for the Treatment of Atopic Dermatitis: Design, Characterization and E cacy in Hairless Mouse Model

    Get PDF
    Pioglitazone (PGZ) is a drug used to treat type 2 diabetes mellitus that has been reported to show additional therapeutic activities on diverse inflammatory parameters. The aim of this study was to optimize a topical PGZ-loaded nanoemulsion (PGZ-NE) in order to evaluate its effectiveness for treating atopic dermatitis (AD). The composition of the nanoformulation was established by pseudo-ternary diagram. Parameters such as physical properties, stability, in vitro release profile, and ex vivo permeation were determined. The efficacy study was carried out using oxazolone-induced AD model in hairless mice. PGZ-NE released the drug following a hyperbolic kinetic. Additionally, its properties provided high retention potential of drug inside the skin. Therapeutic benefits of PGZ-NE were confirmed on diverse events of the inflammatory process, such as reduction of lesions, enhancement of skin barrier function, diminished infiltration of inflammatory cells, and expression of pro-inflammatory cytokines. These results were reinforced by atomic force microscope (AFM), which demonstrated the ability of the formulation to revert the rigidification caused by oxazolone and consequently improve the elasticity of the skin. These results suggest that PGZ-NE may be a promising treatment for inflammatory dermatological conditions such as AD.This work was supported by Secretaría de Educación Superior, Ciencia, Tecnología e Innovación (SENESCYT—Ecuador) (grant number 073-CIBAE-2015)

    Quality by Design of Pranoprofen Loaded Nanostructured Lipid Carriers and Their Ex Vivo Evaluation in Different Mucosae and Ocular Tissues

    Full text link
    Transmucosal delivery is commonly used to prevent or treat local diseases. Pranoprofen is an anti-inflammatory drug prescribed in postoperative cataract surgery, intraocular lens implantation, chorioretinopathy, uveitis, age-related macular degeneration or cystoid macular edema. Pranoprofen can also be used for acute and chronic management of osteoarthritis and rheumatoid arthritis. Quality by Design (QbD) provides a systematic approach to drug development and maps the influence of the formulation components. The aim of this work was to develop and optimize a nanostructured lipid carrier by means of the QbD and factorial design suitable for the topical management of inflammatory processes on mucosal tissues. To this end, the nanoparticles loading pranoprofen were prepared by a high-pressure homogenization technique with Tween 80 as stabilizer and Lanette® 18 as the solid lipid. From, the factorial design results, the PF-NLCs-N6 formulation showed the most suitable characteristics, which was selected for further studies. The permeability capacity of pranoprofen loaded in the lipid-based nanoparticles was evaluated by ex vivo transmucosal permeation tests, including buccal, sublingual, nasal, vaginal, corneal and scleral mucosae. The results revealed high permeation and retention of pranoprofen in all the tissues tested. According to the predicted plasma concentration at the steady-state, no systemic effects would be expected, any neither were any signs of ocular irritancy observed from the optimized formulation when tested by the HET-CAM technique. Hence, the optimized formulation (PF-NLCs-N6) may offer a safe and attractive nanotechnological tool in topical treatment of local inflammation on mucosal diseases

    Therapeutic applications of essential oils from native and cultivated ecuadorian plants: Cutaneous candidiasis and dermal anti-inflammatory activity

    Full text link
    Abstract: Essential oils are a complex mixture of aromatic substances whose pharmacological actions, including antimicrobial, antioxidant, anticancer, and anti-inflammatory activities, have been widely reported. This study aimed to evaluate the anti-Candida and dermal anti-inflammatory activity of essential oils from native and cultivated Ecuadorian plants. Essential oils from Bursera graveolens, Dacryodes peruviana, Mespilodaphne quixos, and Melaleuca armillaris were isolated by hydrodistillation and were characterized physically and chemically. Its tolerance was analyzed by in vitro and in vivo studies. The antifungal activity was studied against Candida albicans, Candida glabrata, and Candida parapsilosis, whereas the anti-inflammatory effect was evaluated by a mouse ear edema model. The main compounds were limonene, -phellandrene, (E)-methyl cinnamate, and 1,8-cineole, respectively. All essential oils showed high tolerability for skin application, antifungal activity against the three Candida strains, and anti-inflammatory efficacy by decreasing edema and overexpression of pro-inflammatory cytokines. Dacryodes peruviana essential oil showed the highest antifungal activity. On the other hand, Dacryodes peruviana and Melaleuca armillaris showed the greatest anti-inflammatory potential, decreasing edema by 53.3% and 65.25%, respectively, and inhibiting the overexpression of TNF- , IL-8, IL-17A, and IL-23. The results suggest that these essential oils could be used as alternative therapies in the treatment of both cutaneous candidiasis and dermal inflammation

    Apremilast Microemulsion as Topical Therapy for Local Inflammation: Design, Characterization and Efficacy Evaluation

    Get PDF
    Apremilast (APR) is a selective phosphodiesterase 4 inhibitor administered orally in the treatment of moderate-to-severe plaque psoriasis and active psoriatic arthritis. The low solubility and permeability of this drug hinder its dermal administration. The purpose of this study was to design and characterize an apremilast-loaded microemulsion (APR-ME) as topical therapy for local skin inflammation. Its composition was determined using pseudo-ternary diagrams. Physical, chemical and biopharmaceutical characterization were performed. Stability of this formulation was studied during 90 days. Tolerability of APR-ME was evaluated in healthy volunteers while its anti-inflammatory potential was studied using in vitro and in vivo models. A homogeneous formulation with Newtonian behavior and droplets of nanometric size and spherical shape was obtained. APR-ME released the incorporated drug following a first-order kinetic and facilitated drug retention into the skin, ensuring a local effect. Anti-inflammatory potential was observed for its ability to decrease the production of IL-6 and IL-8 in the in vitro model. This effect was confirmed in the in vivo model histologically by reduction in infiltration of inflammatory cells and immunologically by decrease of inflammatory cytokines IL-8, IL-17A and TNFα. Consequently, these results suggest that this formulation could be used as an attractive topical treatment for skin inflammation

    Therapeutic applications of essential oils from native and cultivated ecuadorian plants: Cutaneous candidiasis and dermal anti-inflammatory activity

    Full text link
    Abstract: Essential oils are a complex mixture of aromatic substances whose pharmacological actions, including antimicrobial, antioxidant, anticancer, and anti-inflammatory activities, have been widely reported. This study aimed to evaluate the anti-Candida and dermal anti-inflammatory activity of essential oils from native and cultivated Ecuadorian plants. Essential oils from Bursera graveolens, Dacryodes peruviana, Mespilodaphne quixos, and Melaleuca armillaris were isolated by hydrodistillation and were characterized physically and chemically. Its tolerance was analyzed by in vitro and in vivo studies. The antifungal activity was studied against Candida albicans, Candida glabrata, and Candida parapsilosis, whereas the anti-inflammatory effect was evaluated by a mouse ear edema model. The main compounds were limonene, -phellandrene, (E)-methyl cinnamate, and 1,8-cineole, respectively. All essential oils showed high tolerability for skin application, antifungal activity against the three Candida strains, and anti-inflammatory efficacy by decreasing edema and overexpression of pro-inflammatory cytokines. Dacryodes peruviana essential oil showed the highest antifungal activity. On the other hand, Dacryodes peruviana and Melaleuca armillaris showed the greatest anti-inflammatory potential, decreasing edema by 53.3% and 65.25%, respectively, and inhibiting the overexpression of TNF- , IL-8, IL-17A, and IL-23. The results suggest that these essential oils could be used as alternative therapies in the treatment of both cutaneous candidiasis and dermal inflammation
    corecore