983 research outputs found

    Inverse problems for Schrodinger equations with Yang-Mills potentials in domains with obstacles and the Aharonov-Bohm effect

    Full text link
    We study the inverse boundary value problems for the Schr\"{o}dinger equations with Yang-Mills potentials in a bounded domain Ω0Rn\Omega_0\subset\R^n containing finite number of smooth obstacles Ωj,1jr\Omega_j,1\leq j \leq r. We prove that the Dirichlet-to-Neumann operator on Ω0\partial\Omega_0 determines the gauge equivalence class of the Yang-Mills potentials. We also prove that the metric tensor can be recovered up to a diffeomorphism that is identity on Ω0\partial\Omega_0.Comment: 15 page

    A new approach to hyperbolic inverse problems II (Global step)

    Full text link
    We study the inverse problem for the second order self-adjoint hyperbolic equation with the boundary data given on a part of the boundary. This paper is the continuation of the author's paper [E]. In [E] we presented the crucial local step of the proof. In this paper we prove the global step. Our method is a modification of the BC-method with some new ideas. In particular, the way of the determination of the metric is new.Comment: 21 pages, 2 figure

    A new approach to hyperbolic inverse problems

    Full text link
    We present a modification of the BC-method in the inverse hyperbolic problems. The main novelty is the study of the restrictions of the solutions to the characteristic surfaces instead of the fixed time hyperplanes. The main result is that the time-dependent Dirichlet-to-Neumann operator prescribed on a part of the boundary uniquely determines the coefficients of the self-adjoint hyperbolic operator up to a diffeomorphism and a gauge transformation. In this paper we prove the crucial local step. The global step of the proof will be presented in the forthcoming paper.Comment: We corrected the proof of the main Lemma 2.1 by assuming that potentials A(x),V(x) are real value

    Optical Aharonov-Bohm effect: an inverse hyperbolic problems approach

    Full text link
    We describe the general setting for the optical Aharonov-Bohm effect based on the inverse problem of the identification of the coefficients of the governing hyperbolic equation by the boundary measurements. We interpret the inverse problem result as a possibility in principle to detect the optical Aharonov-Bohm effect by the boundary measurements.Comment: 34 pages. Minor changes, references adde

    Inverse hyperbolic problems and optical black holes

    Get PDF
    In this paper we give a more geometrical formulation of the main theorem in [E1] on the inverse problem for the second order hyperbolic equation of general form with coefficients independent of the time variable. We apply this theorem to the inverse problem for the equation of the propagation of light in a moving medium (the Gordon equation). Then we study the existence of black and white holes for the general hyperbolic and for the Gordon equation and we discuss the impact of this phenomenon on the inverse problems

    Strong wavefront lemma and counting lattice points in sectors

    Full text link
    We compute the asymptotics of the number of integral quadratic forms with prescribed orthogonal decompositions and, more generally, the asymptotics of the number of lattice points lying in sectors of affine symmetric spaces. A new key ingredient in this article is the strong wavefront lemma, which shows that the generalized Cartan decomposition associated to a symmetric space is uniformly Lipschitz

    Inverse Scattering for Gratings and Wave Guides

    Full text link
    We consider the problem of unique identification of dielectric coefficients for gratings and sound speeds for wave guides from scattering data. We prove that the "propagating modes" given for all frequencies uniquely determine these coefficients. The gratings may contain conductors as well as dielectrics and the boundaries of the conductors are also determined by the propagating modes.Comment: 12 page

    Influence of melt feeding scheme and casting parameters during direct-chill casting on microstructure of an AA7050 billet

    Get PDF
    © The Minerals, Metals & Materials Society and ASM International 2012Direct-chill (DC) casting billets of an AA7050 alloy produced with different melt feeding schemes and casting speeds were examined in order to reveal the effect of these factors on the evolution of microstructure. Experimental results show that grain size is strongly influenced by the casting speed. In addition, the distribution of grain sizes across the billet diameter is mostly determined by melt feeding scheme. Grains tend to coarsen towards the center of a billet cast with the semi-horizontal melt feeding, while upon vertical melt feeding the minimum grain size was observed in the center of the billet. Computer simulations were preformed to reveal sump profiles and flow patterns during casting under different melt feeding schemes and casting speeds. The results show that solidification front and velocity distribution of the melt in the liquid and slurry zones are very different under different melt feeding scheme. The final grain structure and the grain size distribution in a DC casting billet is a result of a combination of fragmentation effects in the slurry zone and the cooling rate in the solidification range

    Shear stress induced stimulation of mammalian cell metabolism

    Get PDF
    A flow apparatus was developed for the study of the metabolic response of anchorage dependent cells to a wide range of steady and pulsatile shear stresses under well controlled conditions. Human umbilical vein endothelial cell monolayers were subjected to steady shear stresses of up to 24 dynes/sq cm, and the production of prostacyclin was determined. The onset of flow led to a burst in prostacyclin production which decayed to a long term steady state rate (SSR). The SSR of cells exposed to flow was greater than the basal release level, and increased linearly with increasing shear stress. It is demonstrated that shear stresses in certain ranges may not be detrimental to mammalian cell metabolism. In fact, throughout the range of shear stresses studied, metabolite production is maximized by maximizing shear stress
    corecore