15 research outputs found
Terahertz and Sub-Terahertz Tunable Resonant Detectors Based on Excitation of Two Dimensional Plasmons in InGaAs/InP HEMTs
Plasmons can be generated in the two dimensional electron gas (2DEG) of grating-gated high electron mobility transistors (HEMTs). The grating-gate serves dual purposes, namely to provide the required wavevector to compensate for the momentum mismatch between the free-space radiation and 2D-plasmons, and to tune the 2DEG sheet charge density. Since the plasmon frequency at a given wavevector depends on the sheet charge density, a gate bias can shift the plasmon resonance. In some cases, plasmon generation results in a resonant change in channel conductance which allows a properly designed grating-gated HEMT to be used as a voltage-tunable resonant detector or filter. Such devices may find applications as chip-scale tunable detectors in airborne multispectral detection and target tracking. Reported here are investigations of InGaAs/InP-based HEMT devices for potential tunable resonant sub-THz and THz detectors. The HEMTs were fabricated from a commercial double-quantum well HEMT wafer by depositing source, drain, and semi-transparent gate contacts using standard photolithography processes. Devices were fabricated with metalized transmission gratings with multiple periods and duty cycles. For sub-THz devices, grating period and duty cycle were chosen to be 9 ?m and 22%, respectively; while they were chosen to be 0.5 ?m and 80% for the THz device. The gratings were fabricated on top of the gate region with dimensions of 250 ?m x 195 ?m. The resonant photoresponse of the larger grating-period HEMT was investigated in the sub-THz frequency range of around 100 GHz. The free space radiation was generated by an ultra-stable Backward Wave Oscillator (BWO) and utilized in either frequency modulation (FM), or amplitude modulation (AM) experiments. The photoresponse was measured at 4K sample temperature as the voltage drop across a load resistor connected to the drain while constant source-drain voltages of different values, VSD, were applied. The dependence of such optoelectrical effect to polarization of the incident light, and applied VSD is studied. The results of AM and FM measurements are compared and found to be in agreement with the calculations of the 2D-plasmon absorption theory, however, a nonlinear behavior is observed in the amplitude and the line-shape of the photoresponse for AM experiments. For detection application, the minimum noise-equivalent-power (NEP) of the detector was determined to be 235 and 113 pW/Hz1/2 for FM and AM experiments, respectively. The maximum responsivity of the detector was also estimated to be ~ 200 V/W for the two experiments. The far-IR transmission spectra of the device with nanometer scale period was measured at 4 K sample temperature for different applied gate voltages to investigate the excitation of 2D-plasmon modes. Such plasmon resonances were observed, but their gate bias dependence agreed poorly with expectations
Patterning And Hardening Of Gold Black Infrared Absorber By Shadow Mask Deposition With Ethyl Cyanoacrylate
Patterning of gold-black infrared absorbing films by stencil lithography and hardening by polymer infusion is reported. Gold black nano-structured films are deposited through a thin metal shadow mask in a thermal evaporator in ~400 mTorr pressure of inert gas, followed by ethyl cyanoacrylate fuming through the same mask to produce rugged IR absorptive patterns of ~100 micron scale dimensions. Infrared absorptivity is determined by transmission and reflectivity measurements using a Fourier spectrometer and infrared microscope. Results indicate that the optimized hardening process reduces the usual degradation of the absorptivity with age. This work has potential application to infrared array bolometers. © 2013 SPIE
Long-Wavelength Infrared Surface Plasmons On Ga-Doped Zno Films Excited Via 2D Hole Arrays For Extraordinary Optical Transmission
Extraordinary optical transmission (EOT) through highly conductive ZnO films with sub-wavelength hole arrays is investigated in the long-wavelength infrared regime. EOT is facilitated by the excitation of surface plasmon polaritons (SPPs) and can be tuned utilizing the physical structure size such as period. Pulse laser deposited Ga-doped ZnO has been shown to have fluctuations in optical and electrical parameters based on fabrication techniques, providing a complimentary tuning means. The sub-wavelength 2D hole arrays are fabricated in the Ga-doped ZnO films via standard lithography and etching processes. Optical reflection measurements completed with a microscope coupled FTIR system contain absorption resonances that are in agreement with analytical theories for excitation of SPPs on 2D structures. EOT through Ga-doped ZnO is numerically demonstrated at wavelengths where SPPs are excited. This highly conductive ZnO EOT structure may prove useful in novel integrated components such as tunable biosensors or surface plasmon coupling mechanisms. © 2013 SPIE
Mid-Infrared Extraordinary Transmission Through Ga-Doped Zno Films With 2D Hole Arrays
Extraordinary optical transmission (EOT), through highly conductive ZnO films with sub-wavelength hole arrays is investigated in the long-wavelength infrared regime. EOT is facilitated by the excitation of surface plasmon polaritons (SPPs) on Ga-Doped ZnO films and can be tuned utilizing the physical parameters such as film thickness, period, hole size, and hole shape, as well as doping of the film. Analytical and finite-difference time-domain calculations are completed for 1 micron thick films with square, circular, and triangular hole arrays demonstrating SPP coupling and EOT. The fundamental plasmonic modes are observed in each of these hole shapes at wavelengths that correspond to strong EOT peaks. Doping tunability for these structures is also observed. Ga-doped ZnO films are grown via pulsed laser deposition (PLD) on silicon with plasma frequencies in the near-infrared. The sub-wavelength 2D hole arrays are fabricated in the Ga-doped ZnO films via standard lithography and etching processes. This highly conductive ZnO EOT structure may prove useful in novel integrated components such as tunable biosensors or surface plasmon coupling mechanisms. © 2014 SPIE
Tunable Excitation Of Two-Dimensional Plasmon Modes In Ingaas/Inp Hemt Devices For Terahertz Detection
THz electromagnetic waves resonantly excite plasmons in the two dimensional electron gas (2DEG) of high electron mobility transistors (HEMTs) via grating-gate couplers. These excitations can induce measureable photoresponse. Biasing the grating gate tunes the photoresponse via control of 2DEG carrier density. Plasmons are investigated here in an InGaAs/InP HEMT with a 9 μm period grating gate at 78 and 106 GHz free-space radiation and 4K sample temperature. The dependence of the photoresponse on applied Source-Drain bias is also investigated. The minimum noise equivalent power (NEP) is estimated to be 113 pW/Hz1/2, with maximum responsivity of 200 V/W. Such plasmonic alterations in channel conductance provide a means for voltage-Tunable THz and sub-THz detectors or filters.. © 2014 SPIE
Inp- And Graphene-Based Grating-Gated Transistors For Tunable Thz And Mm-Wave Detection
Tunable resonant absorption by plasmons in the two-dimensional electron gas (2DEG) of grating-gated HEMTs is known for a variety of semiconductor systems, giving promise of chip-scale frequency-agile THz imaging spectrometers. We present our calculations of transmission spectra and resonant photoresponse due to plasmons in InPand graphene-based HEMTs at millimeter and THz wavelengths. Our experimental approach to measurement of electrical response is also described. Potential applications include man-portable or space-based spectral-sensing. © 2011 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE)
Plasmon Absorption In Grating-Coupled Inp Hemt And Graphene Sheet For Tunable Thz Detection
The two-photon absorption (2PA) spectrum of an organic single crystal is reported. The crystal is grown by self-nucleation of a subsaturated hot solution of acetonitrile, and is composed of an asymmetrical donor-π-acceptor cyanine-like dye molecule. To our knowledge, this is the first report of the 2PA spectrum of single crystals made from a cyanine-like dye. The linear and nonlinear properties of the single crystalline material are investigated and compared with the molecular properties of a toluene solution of its monomeric form. The maximum polarization-dependent 2PA coefficient of the single crystal is 52 ± 9 cm/GW, which is more than twice as large as that for the inorganic semiconductor CdTe with a similar absorption edge. The optical properties, linear and nonlinear, are strongly dependent upon incident polarization due to anisotropic molecular packing. X-ray diffraction analysis shows π-stacking dimers formation in the crystal, similar to H-aggregates. Quantum chemical calculations demonstrate that this dimerization leads to the splitting of the energy bands and the appearance of new red-shifted 2PA bands when compared to the solution of monomers. This trend is opposite to the blue shift in the linear absorption spectra upon H-aggregation. © 2012 American Chemical Society
Plasmon Resonance Response To Millimeter-Waves Of Grating-Gated Ingaas/Inp Hemt
Tunable resonant absorption by plasmons in the two-dimensional electron gas (2DEG) of grating-gated HEMTs is known for a variety of semiconductor systems, giving promise of chip-scale frequency- agile THz imaging spectrometers. In this work, we present our approach to measurement of electrical response to millimeter waves from backward-wave oscillators (BWO) in the range 40-110 GHz for InP-based HEMTs. Frequency-modulation of the BWO with lock-in amplification of the source-drain current gives an output proportional to the change in absorption with frequency without contribution from non-resonant response. This is a first step in optimizing such devices for manportable or space-based spectral-sensing applications. © 2010 SPIE
Plasmonic Resonance Absorption Spectra In Mid-Infrared In An Array Of Graphene Nanoresonators
We experimentally demonstrated graphene plasmon resonant absorption in mid-IR by utilizing an array of graphene nanoribbon resonators on SiO2 substrate. By tuning resonator width we probed the graphene plasmons with λp ≤ λ0/100 and plasmon resonances as high as 0.240 eV (2100 cm-1) for 40 nm wide nanoresonators. Resonant absorption spectra revealed plasmon dispersion as well as plasmon damping due to the interaction of graphene plasmons with the surface polar phonons in SiO 2 substrate and intrinsic graphene optical phonons. Graphene nanoribbons with varying widths enabled us to identify the damping mechanisms of graphene plasmons and much reduced damping was observed when the plasmon resonance frequencies were close to the substrate polar phonon frequencies. Then, by direct ebeam exposure of graphene nanoresonators, we effectively changed the carrier density and caused red-shift of the plasmon spectra. This work will provide insight into light-sensitive, frequency-Tunable photodetectors based on graphene\u27s plasmonic excitations.. © 2014 SPIE
Inp- And Graphene-Based Grating-Gated Transistors For Tunable Thz And Mm-Wave Detection
Plasmon excitation in the two dimensional electron gas (2DEG) of grating-gated high electron mobility transistors (HEMTs) gives rise to terahertz absorption lines, which may be observed via transmission spectroscopy. Such absorption resonances may alter the channel conductance, giving a means for tunable terahertz detection. The transmission spectrum may be calculated analytically by making simplifying assumptions regarding the electron distribution. Such assumptions can limit the usefulness of such analytical theories for device optimization. Indeed, significant differences between experimentally observed resonances and theory have been noted and explained qualitatively as due to additional, unanticipated, sheets of charge in the device. Here, we explore finite element method (FEM) simulations, used to obtain realistic carrier profiles. Simulated plasmon spectra do not support previous explanations of red-shifting due to interactions with additional neighboring charge distributions. Simulations do show unexpected plasmon resonances associated with the unanticipated sheet charge, named virtual-gate, as well as the expected resonances associated with the 2DEG. Plasmonic modes determined from these investigations are able to account for the measured absorption lines which were previously thought to be red-shifted 2DEG plasmons. Additionally, the same simulation approach was applied to proposed graphene-based devices to investigate their plasmon resonance spectra. © 2012 SPIE