67 research outputs found

    Validation of an educational booklet targeted to patients candidate for total knee arthroplasty

    Get PDF
    SummaryBackgroundKnee osteoarthritis is a highly prevalent condition and the leading reason for total knee arthroplasty (TKA). No consensus exists about the optimal content of preoperative patient information and, to the best of our knowledge, no validated information document is available. Our objective here was to obtain validation by healthcare professionals and patients of an educational booklet for patients awaiting TKA.Materials and methodsThe booklet was developed and validated in six phases: systematic literature review, drafting of the first version, critical revision by a panel of experts, modification of the booklet, validation by a multidisciplinary panel of experts, and validation by two groups of patients, one composed of patients awaiting TKA and the other of patients in the immediate post-TKA period. We assessed the impact of the booklet based on knowledge and belief scores before and 2 days after receiving the booklet.ResultsCritical revision of the first draft led to changes to meet the concerns voiced by the experts. Knowledge improved only in the patient group given the booklet preoperatively (from 6/10 to 9/10, P=0.005). The booklet did not modify beliefs in either patient group.DiscussionWe used a rigorous methodology to develop and validate the contents of an educational booklet. Receiving this document before TKA resulted in improved patient knowledge but had no impact on beliefs.Level of evidenceLevel IV

    Early prediction of cardiac resynchronization therapy response by non-invasive electrocardiogram markers

    Full text link
    [EN] Cardiac resynchronization therapy (CRT) is an effective treatment for those patients with severe heart failure. Regrettably, there are about one third of CRT "non-responders", i.e. patients who have undergone this form of device therapy but do not respond to it, which adversely affects the utility and cost-effectiveness of CRT. In this paper, we assess the ability of a novel surface ECG marker to predict CRT response. We performed a retrospective exploratory study of the ECG previous to CRT implantation in 43 consecutive patients with ischemic (17) or non-ischemic (26) cardiomyopathy. We extracted the QRST complexes (consisting of the QRS complex, the S-T segment, and the T wave) and obtained a measure of their energy by means of spectral analysis. This ECG marker showed statistically significant lower values for non-responder patients and, joint with the duration of QRS complexes (the current gold-standard to predict CRT response), the following performances: 86% accuracy, 88% sensitivity, and 80% specificity. In this manner, the proposed ECG marker may help clinicians to predict positive response to CRT in a non-invasive way, in order to minimize unsuccessful procedures.This work was supported by MINECO under grants MTM2013-43540-P and MTM2016-76647-P.Ortigosa, N.; Pérez-Roselló, V.; Donoso, V.; Osca Asensi, J.; Martínez-Dolz, L.; Fernández Rosell, C.; Galbis Verdu, A. (2018). Early prediction of cardiac resynchronization therapy response by non-invasive electrocardiogram markers. Medical & Biological Engineering & Computing. 56(4):611-621. https://doi.org/10.1007/s11517-017-1711-1S611621564Boggiatto P, Fernández C, Galbis A (2009) A group representation related to the stockwell transform. Indiana University Mathematics Journal 58(5):2277–2296Brignole M, Auricchio A, Baron-Esquivias G, Bordachar P, Boriani G et al (2013) 2013 ESC guidelines on cardiac pacing and cardiac resynchronization therapy. Europace 15:1070–1118Brown RA, Lauzon ML, Frayne R (2010) A general description of linear time-frequency transforms and formulation of a fast, invertible transform that samples the continuous s-transform spectrum nonredundantly. IEEE Trans Signal Process 58(1): 281–290Carità P, Corrado E, Pontone G, Curnis A, Bontempi L et al (2016) Non-responders to cardiac resynchronization therapy: insights from multimodality imaging and electrocardiography. A brief review. Int J Cardiol 225:402–407Cazeau S, Leclercq C, Lavergne T, Walker S, Varma C, Linde C et al (2001) Effects of multisite biventricular pacing in patients with heart failure and intraventricular conduction delay. N Engl J Med 344:873–880Chang CC, Lin CJ (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 2(3):27:1–27:27Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002) SMOTE: synthetic minority over-sampling technique. J Artif Intell Res 16(1):321–357Cleland JGF, Abraham WT, Linde C, Gold MR, Young J et al (2013) An individual patient meta-analysis of five randomized trials assessing the effects of cardiac resyn- chronization therapy on morbidity and mortality in patients with symptomatic heart failure. Eur Heart Journal 34(46):3547–3556Cleland JGF, Calvert MJ, Verboven Y, Freemantle N (2009) Effects of cardiac resynchronization therapy on long-term quality of life: an analysis from the Cardiac Resynchronisation-Heart Failure (CARE-HF) study. Am Heart J 157:457–466Cleland JGF, Freemantle N, Erdmann E, Gras D, Kappenberger L et al (2012) Long-term mortality with cardiac resynchronization therapy in the Cardiac Resynchronization-Heart Failure (CARE-HF) trial. Eur J Heart Fail 14:628–634Egoavil CA, Ho RT, Greenspon AJ, Pavri BB (2005) Cardiac resynchronization therapy in patients with right bundle branch block: analysis of pooled data from the MIRACLE and Contak CD trials. Heart Rhythm 2(6):611–615Engels EB, Mafi-Rad M, van Stipdonk AM, Vernooy K, Prinzen FW (2016) Why QRS duration should be replaced by better measures of electrical activation to improve patient selection for cardiac resynchronization therapy. J Cardiovasc Transl Res 9(4):257–265Engels EB, Végh EM, Van Deursen CJ, Vernooy K, Singh JP, Prinzen FW (2015) T-wave area predicts response to cardiac resynchronization therapy in patients with left bundle branch block. J Cardiovasc Electrophysiol 26(2):176–183Eschalier R, Ploux S, Ritter P, Haïssaguerre M, Ellenbogen K, Bordachar P (2015) Nonspecific intraventricular conduction delay: definitions, prognosis, and implications for cardiac resynchronization therapy. Heart Rhythm 12(5):1071–1079Goldenberg I, Kutyifa V, Klein HU, Cannom DS, Brown MW et al (2014) Survival with cardiac-resynchronization therapy in mild heart failure. N Engl J Med 370:1694–1701He H, Bai Y, Garcia EA, Li S (2008) ADASYN: adaptive synthetic sampling approach for imbalanced learning. In: International joint conference on neural networks, pp 1322–1328Jacobsson J, Borgguist R, Reitan C, Ghafoori E, Chatterjee NA et al (2016) Usefulness of the sum absolute QRST integral to predict outcomes in patients receiving cardiac resynchronization therapy. J Cardiovasc Electrophysiol 118(3):389–395McMurray JJ (2010) Clinical practice. Systolic heart failure. N Engl J Med 3623:228–238Meyer CR, Keiser HN (1977) Electrocardiogram baseline noise estimation and removal using cubic splines and state-space computation techniques. Comput Biomed Res 10:459–470Ortigosa N, Giménez VM (2014) Raw data extraction from electrocardiograms with portable document format. Comput Meth Programs Biomed 113(1):284–289Ortigosa N, Osca J, Jiménez R, Rodríguez Y, Fernández C, Galbis A (2016) Predictive analysis of cardiac resynchronization therapy response by means of the ECG. 2016 Comput Cardio 43:753–756. https://doi.org/10.22489/CinC.2016.218-415Ponikowski P, Voors AA, Anker S, Bueno H, Cleland JG, Coats AJ et al (2016) 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail 18(8):891–975Rad MM, Wijntjens GW, Engels EB, Blaauw Y, Luermans JG et al (2016) Vectorcardiographic QRS area identifies delayed left ventricular lateral wall activation determined by electroanatomic mapping in candidates for cardiac resynchronization therapy. Heart Rhythm 13(1):217–225Shanks M, Delgado V, Bax JJ (2016) Cardiac resynchronization therapy in non-ischemic cardiomyopathy. Journal of Atrial Fibrillation 8(5):47–52Singh JP, Fan D, Heist EK, Alabiad CR, Taub C et al (2006) Left ventricular lead electrical delay predicts response to cardiac resynchronization therapy. Heart Rhythm 3(11):1285–1292Sohaib SM, Finegold JA, Nijjer SS, Hossain R, Linde C et al (2015) Opportunity to increase life span in narrow QRS cardiac resynchronization therapy recipients by deactivating ventricular pacing: evidence from randomized controlled trials. JACC Heart Fail 3:327–336Stockwell RG, Mansinha L, Lowe RP (1996) Localization of the complex spectrum: the S transform. IEEE Trans Signal Process 44(4):998–1001Tang ASL, Wells GA, Talajic M, Arnold MO, Sheldon R et al (2010) Cardiac-resynchronization therapy for mild-to-moderate heart failure. N Engl J Med 363:2385–2395Tereshchenko LG, Cheng A, Park J, Wold N, Meyer TE, Gold MR et al (2015) Novel measure of electrical dyssynchrony predicts response in cardiac resynchronization therapy: results from the SMART-AV trial. Heart Rhythm 12(2):2402–2410van Deursen CJ, Vernooy K, Dudink E, Bergfeldt L, Crijns HJ et al (2015) Vectorcardiographic QRS area as a novel predictor of response to cardiac resynchronization therapy. J Electrocardiol 48(1):45–52Wang TJ (2003) Natural history of asymptomatic left ventricular systolic dysfunction in the community. Circulation 108:977–982Woods B, Hawkins N, Mealing S, Sutton A, Abraham WT et al (2015) Individual patient data network meta-analysis of mortality effects of implantable cardiac devices. Heart 101:1800–1806Ypenburg C, van Bommel RJ, Borleffs CJ, Bleeker GB, Boersma E et al (2009) Long-term prognosis after cardiac resynchronization therapy is related to the extent of left ventricular reverse remodeling at midterm follow-up. J Am Coll Cardiol 53(6):483–490Yu CM, Hayes DL (2013) Cardiac resynchronization therapy: state of the art 2013. Eur Heart J 34:1396–140

    TRPV1 in Brain Is Involved in Acetaminophen-Induced Antinociception

    Get PDF
    Background: Acetaminophen, the major active metabolite of acetanilide in man, has become one of the most popular overthe- counter analgesic and antipyretic agents, consumed by millions of people daily. However, its mechanism of action is still a matter of debate. We have previously shown that acetaminophen is further metabolized to N-(4-hydroxyphenyl)-5Z,8Z,11Z,14Z-eicosatetraenamide (AM404) by fatty acid amide hydrolase (FAAH) in the rat and mouse brain and that this metabolite is a potent activator of transient receptor potential vanilloid 1 (TRPV1) in vitro. Pharmacological activation of TRPV1 in the midbrain periaqueductal gray elicits antinociception in rats. It is therefore possible that activation of TRPV1 in the brain contributes to the analgesic effect of acetaminophen. Methodology/Principal Findings: Here we show that the antinociceptive effect of acetaminophen at an oral dose lacking hypolocomotor activity is absent in FAAH and TRPV1 knockout mice in the formalin, tail immersion and von Frey tests. This dose of acetaminophen did not affect the global brain contents of prostaglandin E-2 (PGE(2)) and endocannabinoids. Intracerebroventricular injection of AM404 produced a TRPV1-mediated antinociceptive effect in the mouse formalin test. Pharmacological inhibition of TRPV1 in the brain by intracerebroventricular capsazepine injection abolished the antinociceptive effect of oral acetaminophen in the same test. Conclusions: This study shows that TRPV1 in brain is involved in the antinociceptive action of acetaminophen and provides a strategy for developing central nervous system active oral analgesics based on the coexpression of FAAH and TRPV1 in the brain

    Efficient Genetic Method for Establishing Drosophila Cell Lines Unlocks the Potential to Create Lines of Specific Genotypes

    Get PDF
    Analysis of cells in culture has made substantial contributions to biological research. The versatility and scale of in vitro manipulation and new applications such as high-throughput gene silencing screens ensure the continued importance of cell-culture studies. In comparison to mammalian systems, Drosophila cell culture is underdeveloped, primarily because there is no general genetic method for deriving new cell lines. Here we found expression of the conserved oncogene RasV12 (a constitutively activated form of Ras) profoundly influences the development of primary cultures derived from embryos. The cultures become confluent in about three weeks and can be passaged with great success. The lines have undergone more than 90 population doublings and therefore constitute continuous cell lines. Most lines are composed of spindle-shaped cells of mesodermal type. We tested the use of the method for deriving Drosophila cell lines of a specific genotype by establishing cultures from embryos in which the warts (wts) tumor suppressor gene was targeted. We successfully created several cell lines and found that these differ from controls because they are primarily polyploid. This phenotype likely reflects the known role for the mammalian wts counterparts in the tetraploidy checkpoint. We conclude that expression of RasV12 is a powerful genetic mechanism to promote proliferation in Drosophila primary culture cells and serves as an efficient means to generate continuous cell lines of a given genotype

    Implications of serial measurements of natriuretic peptides in heart failure: insights from BIOSTAT‐CHF

    Get PDF
    No abstract available

    UPSA Pain Institute: supporting research for ten years

    No full text
    corecore