127 research outputs found

    On a simple and accurate quantum correction for Monte Carlo simulation

    Get PDF
    We investigate a quantum-correction method for Monte Carlo device simulation. The method consists of reproducing quantum mechanical density-gradient simulation by classical drift-diffusion simulation with modified effective oxide thickness and work function and using these modifications subsequently in Monte Carlo simulation. This approach is found to be highly accurate and can be used fully automatically in a technology computer-aided design (TCAD) workbench project. As an example, the methodology is applied to the Monte Carlo simulation of the on-current scaling in p- and n-type MOSFETs corresponding to a 65 nm node technology. In particular, it turns out that considering only the total threshold voltage shift still involves a significant difference to a Monte Carlo simulation based on the combined correction of oxide thickness and work function. Ultimately, this quantum correction permits to consider surface scattering as a combination of specular and diffusive scattering where the conservation of energy and parallel wave vector in the specular part takes stress-induced band structure modifications and hence the corresponding surface mobility changes on a physical basis into accoun

    Measurement of cerebral oxygen pressure in living mice by two-photon phosphorescence lifetime microscopy

    Full text link
    The ability to quantify partial pressure of oxygen (pO2) is of primary importance for studies of metabolic processes in health and disease. Here, we present a protocol for imaging of oxygen distributions in tissue and vasculature of the cerebral cortex of anesthetized and awake mice. We describe in vivo two-photon phosphorescence lifetime microscopy (2PLM) of oxygen using the probe Oxyphor 2P. This minimally invasive protocol outperforms existing approaches in terms of accuracy, resolution, and imaging depth

    Comparative Study of Acute Kidney Injury in Liver Transplantation: Donation after Circulatory Death versus Brain Death

    Get PDF
    BACKGROUND Acute kidney injury (AKI) after orthotopic liver transplantation (OLT) contributes to morbidity and mortality. Donation after circulatory death (DCD) has been established to increase the pool of organs. While surgical complications are reported to be comparable in DCD and donation after brain death (DBD) OLT, there is a knowledge gap concerning adverse kidney events in these 2 groups. MATERIAL AND METHODS In this retrospective cohort study, 154 patients received a DBD and 68 received a DCD organ (2016-2020). The primary outcome was a major adverse kidney event within 30 days (MAKE-30). The secondary outcome was dynamics of AKI and kidney replacement therapy (KRT) during the first postoperative week and on postoperative day 30. Incidence and resolution from AKI and KRT and patient survival (PS) 30 days after OLT were compared between the DCD and DBD recipients. RESULTS MAKE-30 incidence after OLT was comparable in DCD (n=27, 40%) vs DBD (n=41, 27%) recipients (risk ratio 1.49 [95% CI 1.01, 2.21], p=0.073). AKI incidence was comparable in DCD (n=58, 94%) vs DBD (n=95, 82%) recipients (risk ratio 1.14 [95% CI: 1.03, 1.27], P=0.057). Overall, 40% (n=88) of patients required KRT, with no difference between DCD (n=27, 40%) vs DBD (n=61, 40%) recipients (risk ratio 1.00 [95% CI 0.71, 1.43], P>0.999). Resolution of AKI by day 30 was lower in DCD (n=29, 50%) than in DBD (n=66, 69%) recipients (risk ratio 0.71 [95% CI: 0.53, 0.95], P=0.032). Survival after 30 days (DCD: n=64, 94% vs DBD: n=146, 95%, risk ratio 0.99 [95% CI 0.93, 1.06], P>0.999) was also comparable. CONCLUSIONS MAKE-30, short-term renal outcome, and survival did not significantly differ between DBD and DCD-OLT. Resolution of AKI by day 30 was lower in DCD than in DBD recipients

    Altered hemodynamics and vascular reactivity in a mouse model with severe pericyte deficiency

    Full text link
    Pericytes are the mural cells of the microvascular network that are in close contact with underlying endothelial cells. Endothelial-secreted PDGFB leads to recruitment of pericytes to the vessel wall, but this is disrupted in Pdgfbret/ret^{ret/ret} mice when the PDGFB retention motif is deleted. This results in severely reduced pericyte coverage on blood vessels. In this study, we investigated vascular abnormalities and hemodynamics in Pdgfbret/ret^{ret/ret} mice throughout the cerebrovascular network and in different cortical layers by in vivo two-photon microscopy. We confirmed that Pdgfbret/ret^{ret/ret} mice are severely deficient in pericytes throughout the vascular network, with enlarged brain blood vessels and a reduced number of vessel branches. Red blood cell velocity, linear density, and tube hematocrit were reduced in Pdgfbret/ret^{ret/ret} mice, which may impair oxygen delivery to the tissue. We also measured intravascular PO2_{2} and found that concentrations were higher in cortical Layer 2/3 in Pdgfbret/ret^{ret/ret} mice, indicative of reduced blood oxygen extraction. Finally, we found that Pdgfbret/ret^{ret/ret} mice had a reduced capacity for vasodilation in response to an acetazolamide challenge during functional MRI imaging. Taken together, these results suggest that severe pericyte deficiency can lead to vascular abnormalities and altered cerebral blood flow, reminiscent of pathologies such as arteriovenous malformations

    The New IR FEL Facility at the Fritz-Haber-Institut in Berlin

    Get PDF
    A mid-infrared oscillator FEL has been commissioned at the Fritz-Haber-Institut. The accelerator consists of a thermionic gridded gun, a subharmonic buncher and two S-band standing-wave copper structures [1,2]. It provides a final electron energy adjustable from 15 to 50 MeV, low longitudinal (<50 keV-ps) and transverse emittance (<20 π mm-mrad), at more than 200 pC bunch charge with a micro-pulse repetition rate of 1 GHz and a macro-pulse length of up to 15 μs. Regular user operation started in Nov. 2013 with 6 user stations. Pulsed radiation with up to 100 mJ macro-pulse energy at about 0.5% FWHM bandwidth is routinely produced in the wavelength range from 4 to 48 μm. We will describe the FEL design and its performance as determined by IR power, bandwidth, and micro-pulse length measurements. Further, an overview of the new FHI FEL facility and first user results will be given. The latter include, for instance, spectroscopy of bio-molecules (peptides and small proteins) conformer selected or embedded in superfluid helium nano-droplets at 0.4 K, as well as vibrational spectroscopy of mass-selected metal-oxide clusters and protonated water clusters in the gas phase

    Reduced anticoagulation strategy is associated with a lower incidence of intracerebral hemorrhage in COVID-19 patients on extracorporeal membrane oxygenation

    Full text link
    Background Optimal anticoagulation strategies for COVID-19 patients with the acute respiratory distress syndrome (ARDS) on venovenous extracorporeal membrane oxygenation (VV ECMO) remain uncertain. A higher incidence of intracerebral hemorrhage (ICH) during VV ECMO support compared to non-COVID-19 viral ARDS patients has been reported, with increased bleeding rates in COVID-19 attributed to both intensified anticoagulation and a disease-specific endotheliopathy. We hypothesized that lower intensity of anticoagulation during VV ECMO would be associated with a lower risk of ICH. In a retrospective, multicenter study from three academic tertiary intensive care units, we included patients with confirmed COVID-19 ARDS requiring VV ECMO support from March 2020 to January 2022. Patients were grouped by anticoagulation exposure into higher intensity, targeting anti-factor Xa activity (anti-Xa) of 0.3–0.4 U/mL, versus lower intensity, targeting anti-Xa 0.15–0.3 U/mL, cohorts. Mean daily doses of unfractionated heparin (UFH) per kg bodyweight and effectively measured daily anti-factor Xa activities were compared between the groups over the first 7 days on ECMO support. The primary outcome was the rate of ICH during VV ECMO support. Results 141 critically ill COVID-19 patients were included in the study. Patients with lower anticoagulation targets had consistently lower anti-Xa activity values over the first 7 ECMO days (p < 0.001). ICH incidence was lower in patients in the lower anti-Xa group: 4 (8%) vs 32 (34%) events. Accounting for death as a competing event, the adjusted subhazard ratio for the occurrence of ICH was 0.295 (97.5% CI 0.1–0.9, p = 0.044) for the lower anti-Xa compared to the higher anti-Xa group. 90-day ICU survival was higher in patients in the lower anti-Xa group, and ICH was the strongest risk factor associated with mortality (odds ratio [OR] 6.8 [CI 2.1–22.1], p = 0.001). Conclusions For COVID-19 patients on VV ECMO support anticoagulated with heparin, a lower anticoagulation target was associated with a significant reduction in ICH incidence and increased survival

    Commissioning Status of the Fritz Haber Institute THz FEL

    No full text
    The THz Free-Electron Laser (FEL) at the Fritz Haber Institute (FHI) of the Max Planck Society in Berlin is designed to deliver radiation from 3 to 300 microns using a single-plane-focusing mid-IR undulator and a two-plane-focusing far-IR undulator that acts as a waveguide for the optical mode. A key aspect of the accelerator performance is the low longitudinal emittance, < 50 keV-psec, that is specified to be delivered at 200 pC bunch charge and 50 MeV from a gridded thermionic electron source. We utilize twin accelerating structures separated by a chicane to deliver the required performance over the < 20 - 50 MeV energy range. The first structure operates at near fixed field while the second structure controls the output energy, which, under some conditions, requires running in a decelerating mode. "First Light" is targeted for the centennial of the sponsor in October 2011 and we will describe progress in the commissioning of this device to achieve this goal. Specifically, the measured performance of the accelerated electron beam will be compared to design simulations and the observed matching of the beam to the mid-IR wiggler will be described

    First Lasing of the IR FEL at the Fritz-Haber-Institut Berlin

    No full text
    A new mid-infrared FEL has been commissioned at the Fritz-Haber-Institut in Berlin. The oscillator FEL operates with 15 – 50 MeV electrons from a normal-conducting Sband linac. Calculations of the FEL gain and IR-cavity losses predict that lasing will be possible in the wavelength range from less than 4 to more than 50 μm. First lasing was achieved at a wavelength of 16 μm with an electron energy of 28 MeV. At these conditions, lasing was observed over a cavity length scan range of 100 μm
    • …
    corecore