4,304 research outputs found
Two-Loop Bethe Logarithms
We calculate the two-loop Bethe logarithm correction to atomic energy levels
in hydrogen-like systems. The two-loop Bethe logarithm is a low-energy quantum
electrodynamic (QED) effect involving multiple summations over virtual excited
atomic states. Although much smaller in absolute magnitude than the well-known
one-loop Bethe logarithm, the two-loop analog is quite significant when
compared to the current experimental accuracy of the 1S-2S transition: it
contributes -8.19 and -0.84 kHz for the 1S and the 2S state, respectively. The
two-loop Bethe logarithm has been the largest unknown correction to the
hydrogen Lamb shift to date. Together with the ongoing measurement of the
proton charge radius at the Paul Scherrer Institute its calculation will bring
theoretical and experimental accuracy for the Lamb shift in atomic hydrogen to
the level of 10^(-7).Comment: 4 pages, RevTe
Recoil correction to the ground state energy of hydrogenlike atoms
The recoil correction to the ground state energy of hydrogenlike atoms is
calculated to all orders in \alpha Z in the range Z = 1-110. The nuclear size
corrections to the recoil effect are partially taken into account. In the case
of hydrogen, the relativistic recoil correction beyond the Salpeter
contribution and the nonrelativistic nuclear size correction to the recoil
effect, amounts to -7.2(2) kHz. The total recoil correction to the ground state
energy in hydrogenlike uranium (^{238}U^{91+}) constitutes 0.46 eV.Comment: 16 pages, 1 figure (eps), Latex, submitted to Phys.Rev.
Comparing strings in AdS(5)xS(5) to planar diagrams: an example
The correlator of a Wilson loop with a local operator in N=4 SYM theory can
be represented by a string amplitude in AdS(5)xS(5). This amplitude describes
an overlap of the boundary state, which is associated with the loop, with the
string mode, which is dual to the local operator. For chiral primary operators
with a large R charge, the amplitude can be calculated by semiclassical
techniques. We compare the semiclassical string amplitude to the SYM
perturbation theory and find an exact agrement to the first two non-vanishing
orders.Comment: 16 pages, 4 figures, LaTeX; v2: typos corrected; v3: clarification of
boundary conditions at infinity adde
Higher-order binding corrections to the Lamb shift of 2P states
We present an improved calculation of higher-order corrections to the
one-loop self energy of 2P states in hydrogen-like systems with small nuclear
charge Z. The method is based on a division of the integration with respect to
the photon energy into a high- and a low-energy part. The high-energy part is
calculated by an expansion of the electron propagator in powers of the Coulomb
field. The low-energy part is simplified by the application of a
Foldy-Wouthuysen transformation. This transformation leads to a clear
separation of the leading contribution from the relativistic corrections and
removes higher order terms. The method is applied to the 2P_{1/2} and 2P_{3/2}
states in atomic hydrogen. The results lead to new theoretical values for the
Lamb shifts and the fine structure splitting.Comment: 18 pages, LaTeX. In comparison to the journal version, it contains an
added note (2000) which reflects the current status of Lamb shift
calculation
Spontaneous Symmetry Breaking in Two-Channel Asymmetric Exclusion Processes with Narrow Entrances
Multi-particle non-equilibrium dynamics in two-channel asymmetric exclusion
processes with narrow entrances is investigated theoretically. Particles move
on two parallel lattices in opposite directions without changing them, while
the channels are coupled only at the boundaries. A particle cannot enter the
corresponding lane if the exit site of the other lane is occupied. Stationary
phase diagrams, particle currents and densities are calculated in a mean-field
approximation. It is shown that there are four stationary phases in the system,
with two of them exhibiting spontaneous symmetry breaking phenomena. Extensive
Monte Carlo computer simulations confirm qualitatively our predictions,
although the phase boundaries and stationary properties deviate from the
mean-field results. Computer simulations indicate that several dynamic and
phase properties of the system have a strong size dependency, and one of the
stationary phases predicted by the mean-field theory disappears in the
thermodynamic limit.Comment: 13 page
COVID-19 update: the first 6 months of the pandemic
The COVID-19 pandemic is sweeping the world and will feature prominently in all our lives for months and most likely for years to come. We review here the current state 6 months into the declared pandemic. Specifically, we examine the role of the pathogen, the host and the environment along with the possible role of diabetes. We also firmly believe that the pandemic has shown an extraordinary light on national and international politicians whom we should hold to account as performance has been uneven. We also call explicitly on competent leadership of international organizations, specifically the WHO, UN and EU, informed by science. Finally, we also condense successful strategies for dealing with the current COVID-19 pandemic in democratic countries into a developing pandemic playbook and chart a way forward into the future. This is useful in the current COVID-19 pandemic and, we hope, in a very distant future again when another pandemic might arise
Water Abundance in Molecular Cloud Cores
We present Submillimeter Wave Astronomy Satellite (SWAS) observations of the
1_{10}-1_{01} transition of ortho-water at 557 GHz toward 12 molecular cloud
cores. The water emission was detected in NGC 7538, Rho Oph A, NGC 2024, CRL
2591, W3, W3(OH), Mon R2, and W33, and was not detected in TMC-1, L134N, and
B335. We also present a small map of the water emission in S140. Observations
of the H_2^{18}O line were obtained toward S140 and NGC 7538, but no emission
was detected. The abundance of ortho-water relative to H_2 in the giant
molecular cloud cores was found to vary between 6x10^{-10} and 1x10^{-8}. Five
of the cloud cores in our sample have previous water detections; however, in
all cases the emission is thought to arise from hot cores with small angular
extents. The water abundance estimated for the hot core gas is at least 100
times larger than in the gas probed by SWAS. The most stringent upper limit on
the ortho-water abundance in dark clouds is provided in TMC-1, where the
3-sigma upper limit on the ortho-water fractional abundance is 7x10^{-8}.Comment: 5 pages, 3 Postscript figures, uses aastex.cls, emulateapj5.sty
(included), and apjfonts.sty (included
Recoil Corrections of Order to the Hydrogen Energy Levels Revisited
The recoil correction of order to the hydrogen energy
levels is recalculated and a discrepancy existing in the literature on this
correction for the 1S energy level, is resolved. An analytic expression for the
correction to the S-levels with arbitrary principal quantum number is obtained.Comment: 17 pages, ReVTe
Dynamic phase diagram of the REM
By studying the two-time overlap correlation function, we give a
comprehensive analysis of the phase diagram of the Random Hopping Dynamics of
the Random Energy Model (REM) on time-scales that are exponential in the
volume. These results are derived from the convergence properties of the clock
process associated to the dynamics and fine properties of the simple random
walk in the -dimensional discrete cube.Comment: This paper is in large part based on the unpublished work
arXiv:1008.3849. In particular, the analysis of the overlap correlation
function is new as well as the study of the high temperature and short
time-scale transition line between aging and stationarit
The Distribution of Water Emission in M17SW
We present a 17-point map of the M17SW cloud core in the 1_{10}-1_{01}
transition of ortho-water at 557 GHz obtained with the Submillimeter Wave
Astronomy Satellite. Water emission was detected in 11 of the 17 observed
positions. The line widths of the water emission vary between 4 and 9 km
s^{-1}, and are similar to other emission lines that arise in the M17SW core. A
direct comparison is made between the spatial extent of the water emission and
the ^{13}CO J = 5\to4 emission; the good agreement suggests that the water
emission arises in the same warm, dense gas as the ^{13}CO emission. A spectrum
of the H_2^{18}O line was also obtained at the center position of the cloud
core, but no emission was detected. We estimate that the average abundance of
ortho-water relative to H_2 within the M17 dense core is approximately
1x10^{-9}, 30 times smaller than the average for the Orion core. Toward the H
II region/molecular cloud interface in M17SW the ortho-water abundance may be
about 5 times larger than in the dense core.Comment: 4 pages, 3 Postscript figures, uses aastex.cls, emulateapj5.sty
(included), and apjfonts.sty (included
- …