23 research outputs found

    Capacité de stockage de carbone dans le sol de variétés anciennes et modernes de blés

    No full text
    National audienceGĂ©rer convenablement les puits de carbone pourrait permettre de compenser les Ă©missions deCO2. Étant donnĂ© la superficie des terres arables, les pratiques sur les sols agricoles peuventservir de levier d'action. Dans ce projet de thĂšse, nous faisons l’hypothĂšse que la sĂ©questrationdu carbone est modifiĂ©e par le dĂ©veloppement et la profondeur du systĂšme racinaire descultures. À ce titre, les variĂ©tĂ©s de blĂ© anciennes sont rĂ©putĂ©es pour leur systĂšme racinaire plusprofond que celui des modernes. De plus, l’apport d’intrants chimiques de synthĂšse, dont lesengrais azotĂ©s, pourrait modifier la dynamique du carbone du sol. Dans une Ă©tude de terrain,des variĂ©tĂ©s modernes et anciennes ont Ă©tĂ© cultivĂ©es avec ou sans intrants. La morphologieracinaire, les activitĂ©s cataboliques potentielles et les Ă©missions de CO2 de sol et racines incubĂ©sont Ă©tĂ© mesurĂ©s pour estimer le stockage de carbone. Le gĂ©notype et les intrants considĂ©rĂ©sindĂ©pendamment n’ont pas impactĂ© la biomasse, la surface et le diamĂštre moyen des racines.Toutefois, il existe un effet de l’interaction gĂ©notype*intrants : en absence d’intrants, lesvariĂ©tĂ©s anciennes prĂ©sentaient une longueur racinaire plus importante que les modernes Ă  laprofondeur 0-15cm. En prĂ©sence d’intrants, la longueur racinaire et le diamĂštre moyen desvariĂ©tĂ©s modernes augmentaient. Les analyses MicroResp ont montrĂ© que la prĂ©sence d’intrantsentrainait une modification de la respiration pour le sol prĂ©levĂ© Ă  15-30cm. Les incubationsavec suivi de CO2 sont en cours. Une expĂ©rience similaire a Ă©tĂ© mise en place sur trois autressites pour tester la gĂ©nĂ©ricitĂ© des rĂ©sultats

    Response of Wheat Root System and its Mineralization to Chemical Inputs, Plant Genotype and Phenotypic Plasticity

    No full text
    Agricultural lands represent vast terrestrial surfaces, in which agricultural practices are likely to offer leverages to store carbon in soil. We hypothesize that ancient wheat varieties could store more carbon than modern ones, due to a likely bigger and deeper root system. Since modern varieties are often cultivated using synthetic chemical inputs known to modify soil carbon dynamics, it is important to decouple the effect of breeding types (ancient versus modern varieties) and inputs to assess breeding type’s storing potential. We conducted a field experiment with four modern and four ancient varieties, with and without chemical inputs (nitrogen, herbicide and fungicide). Root morphology was assessed by image analysis, potential catabolic activities of specific substrates (fructose, alanine, citric acid) by MicroRespℱ and overall CO 2 emissions by incubating soil and roots from each modality of the experiment for 60 days. Results show that the breeding type did not affect root traits, substrates respiration nor overall CO 2 emissions in our environmental conditions. Application of inputs did not affect root traits but influenced the respiration of specific substrates and CO 2 emissions. The most noticeable response was due to the “breeding type x inputs” interaction : inputs increased CO 2 emissions from soil and root tissues of ancient varieties by 19%, whereas no effect was observed for modern varieties. Taken together, our results did not support the hypothesis that ancient varieties produce more root biomass and more recalcitrant root tissues. It is thus unlikely that they could be more performant than modern ones in storing carbon

    Effects of chemical inputs, plant genotype and phenotypic plasticity on soil carbon storage by wheat root systems

    No full text
    International audiencePurposeThe main goal of this study was to determine if ancient wheat varieties could store more carbon than modern ones in the presence or absence of inputs, due to a likely bigger and deeper root system and a slower mineralization rate.MethodsWe conducted a field experiment with four modern and four ancient varieties (released before 1960 and often grown without inputs), with and without chemical inputs (nitrogen, herbicide and fungicide taken as a single factor). Root morphology was assessed by image analysis, potential catabolic activities of fructose, alanine, citric acid by MicroRespℱ and overall CO2 emissions by incubating soil and roots from each modality for 60 days.ResultsThe breeding type did not affect root traits, substrates respiration nor CO2 emissions in our environmental conditions. The application of inputs did not affect root traits but influenced the respiration of specific substrates and CO2 emissions. The most noticeable response was due to the “breeding type x inputs” interaction: inputs increased CO2 emissions from soil and root tissues of ancient varieties by 19%, whereas no effect was observed for modern varieties.ConclusionTaken together, our results did not support the hypothesis that ancient varieties could be more performant than modern ones in storing carbon in our experimental conditions. Increased CO2 emissions by ancient varieties in the presence of inputs showed that ancient and modern varieties differed in their phenotypic plasticity

    Soil organic carbon storage capacity of old and modern wheat varieties

    No full text
    National audienceDespite the possible mitigation of carbon emissions by favoring carbon transfer to terrestrial carbon sinks, little is knownabout the capacity of different crop genotypes to enhance soil carbon sequestration. We hypothesize that carbon sequestrationpotential linked to old wheat varieties (released before 1960) is higher than the one linked to modern ones while old varietiesare known to develop bigger and deeper root systems. Moreover, modern varieties are often cultivated using syntheticchemical inputs known to modify soil carbon dynamics. We conducted a field experiment by cultivating four modern andfour old wheat varieties, with and without chemical inputs (nitrogen, herbicide and fungicide), in Calcaric Cambisolconditions. After root and soil sampling, root morphology was assessed by image analysis, whereas potential catabolicactivities by soil microbial communities was assessed by MicroResp ℱ measurements. Additionally, CO2 emissionsmeasurements were done by incubating soil and roots from each agronomic modality. Results suggest that the genotype (oldversus modern varieties) did not affect root traits nor substrates respiration, but the soil from old variety modalities released6% more CO2 than the one from modern ones. Application of inputs did not affect root traits, but increased soil microbialrespiration by 11%. Inputs also increased the respiration of citric acid by 19.1%, while it decreased respiration of fructose andalanine by 8.84% and 16.79%, respectively. Taken together, our results invalidate the hypothesis that old varieties could bemore performant than modern ones in storing carbon in this specific soil

    Changes in wheat rhizosphere microbiota in response to chemical inputs, plant genotype and phenotypic plasticity

    No full text
    Since modern wheat varieties are grown with chemical inputs, we ignore if changes observed in rhizosphere microorganisms between ancient and modern varieties are due to i) breeding-induced changes in plant genotype, ii) modifications of the environment via synthetic chemical inputs, or (iii) phenotypic plasticity, defined as the interaction between the genotype and the environment. In the field, we evaluated the effects of various wheat varieties (modern and ancient) grown with or without chemical inputs (N-fertilizer, fungicide and herbicide together) in a crossed factorial design. We analysed rhizosphere bacteria and fungi by amplicons sequencing and mycorrhizal association by microscopic observations. When considered independently of plant genotype, chemical inputs were responsible for an increase in dominance for bacteria and decrease in evenness for bacteria and fungi. Independently of inputs, modern varieties had richer and more even bacterial communities compared to ancient varieties. Phenotypic plasticity had a significant effect: bacterial and fungal diversity decreased when inputs were applied in ancient varieties but not in modern ones. Mycorrhiza were more abundant in modern than ancient varieties, and less abundant when using chemical inputs. Although neglected, phenotypic plasticity is important to understand the evolution of plant-microbiota associations and a relevant target in breeding programs

    Prenez-en de la graine !

    No full text
    prod 2018-237 EA SPE BAP GESTAD INRA AGROSUPNational audienc

    Mieux connaßtre la diversité des semences des espÚces adventices

    No full text
    Une connaissance approfondie de la diversitĂ© des semences adventices doit permettre de mieux Ă©valuer les possibilitĂ©s de rĂ©gulation biologique ou de gestion durable du stock semencier.La dynamique des communautĂ©s adventices annuelles est fortement liĂ©e Ă  la rĂ©serve de semences contenues dans le sol des parcelles cultivĂ©es. Le devenir de ces semences dans le sol dĂ©pend non seulement du milieu, des pratiques culturales rĂ©alisĂ©es mais aussi des caractĂ©ristiques biologiques de chaque espĂšce. Mieux connaĂźtre cette diversitĂ© des semences adventices reste indispensable dans une Ă©valuation des services positifs et nĂ©gatifs que peut rendre une communautĂ© de mauvaises herbes.La diversitĂ© des semences adventices est importante Ă  connaitre pour (1) savoir comment mieux gĂ©rer les adventices en limitant le recours aux herbicides de synthĂšse, (2) mieux comprendre leur rĂŽle dans les chaines trophiques et ainsi favoriser leur rĂ©gulation biologique (exemple de la prĂ©dation par les carabes) et (3), d’un point de vue mĂ©thodologique, faciliter la mise au point de nouvelles mĂ©thodes d’estimation du stock semencier dans les sols des parcelles cultivĂ©es.Cet article illustre la diversitĂ© des semences adventices en synthĂ©tisant les connaissances acquises sur seize espĂšces communĂ©ment trouvĂ©es en parcelles de grande culture. Cette diversitĂ© s’exprime sur les plans botaniques, Ă©cologiques et biologiques, non seulement au niveau interspĂ©cifique (variabilitĂ© entre espĂšces) mais aussi au niveau intraspĂ©cifique (variabilitĂ© entre Ă©chantillons d’une mĂȘme espĂšce). Cette variabilitĂ© intraspĂ©cifique, qui reste Ă  ce jour peu explorĂ©e, indique qu’il est prĂ©fĂ©rable de caractĂ©riser une espĂšce non pas par une valeur unique pour un caractĂšre donnĂ© (par exemple, le poids de mille grains) mais plutĂŽt par une plage de valeurs

    Ancient and modern wheat varieties: A trade‐off between soil CO2 emissions and grain yield?

    No full text
    Abstract Introduction Humanity is facing two great challenges: producing enough food for a growing population and mitigating greenhouse gas emissions. In this study, we investigated the choice of specific wheat varieties to improve carbon storage in soil while producing enough grain to assure food security. We hypothesize that ancient wheat varieties could store more carbon than modern ones, due to a likely bigger and deeper root system or to more recalcitrant root organic matter. Materials and Methods We conducted a field experiment with four modern and four ancient wheat varieties, on four different sites with contrasted soil properties. Root morphology was assessed by image analysis and potential CO2 emissions by incubation for 60 days. Since in situ carbon storage differences between ancient and modern varieties were expected to be weak and not cumulated due to rotation, we estimated expected CO2 emissions from root biomass and potential CO2 emissions. The grain yield was also measured. Results The breeding type (ancient vs. modern varieties) affected root length in two of our four sites, with longer roots for ancient varieties, but it did not affect other root traits such as biomass. The breeding type also affected CO2 emissions, with higher measured CO2 emissions for modern than ancient varieties in Arenic Cambisol conditions (Morvan), and higher estimated (considering root biomass variations) CO2 emissions for modern varieties in Rendzic Leptosol conditions (Saint Romain). Root traits and estimated CO2 emissions were also dependent on the soil properties of the different sites. We did not find any significant differences in grain yield between ancient and modern varieties. Conclusion A possible trade‐off between carbon storage and grain production was expected, but our results suggest that some types of soil can support both high grain yield and C storage, especially those with an important depth, a neutral pH and a fine texture

    La collection de semences adventices de l’UMR AgroĂ©cologie (Dijon)

    No full text
    National audienceLes semences adventices peuvent survivre dans le sol durant de nombreuses annĂ©es. Le stock semencier constitue ainsi un point fondamental du dĂ©veloppement des communautĂ©s adventices, en lien avec leur stratĂ©gie de survie. Son Ă©tude apparaĂźt donc comme un point crucial dans la comprĂ©hension de la dynamique des adventices. Au sein de l’UMR AgroĂ©cologie, des travaux sont menĂ©s pour Ă©tudier diffĂ©rents processus biologiques liĂ©s au cycle de vie des adventices, les phĂ©nomĂšnes de rĂ©sistance des adventices aux herbicides ainsi que les interactions entre les adventices et d’autres organismes (prĂ©dation des graines par des insectes par exemple). Pour soutenir ces activitĂ©s de recherche, une collection de semences adventices a Ă©tĂ© dĂ©veloppĂ©e. Elle est composĂ©e (1) d’une carpothĂšque qui est une collection de semences pour l’aide Ă  l’identification des espĂšces adventices Ă  partir de la semence, et (2) d’un ensemble de lots de semences qui ont pour vocation d’ĂȘtre utilisĂ©s Ă  des fins expĂ©rimentales. Des prospections sont rĂ©alisĂ©es annuellement selon des protocoles respectant les populations d’adventices au champ. Le dĂ©veloppement de nouvelles techniques, basĂ©es sur l’analyse de l’ADN contenu dans les sols, pourrait dans le futur contribuer Ă  caractĂ©riser des stocks semenciers dans les sols. NĂ©anmoins, le maintien d’un savoir botanique restera indispensable pour conserver une connaissance des adventices, et ainsi contribuer Ă  leur gestion intĂ©grĂ©e et durable. The weed seed collection of UMR AgroĂ©cologie (Dijon) Weed seeds can survive in the soil for many years. The soil seed bank plays a key role in the development of weed communities. Its study is crucial for understanding weed species dynamics. The unit of Agroecology investigates biological processes related to the weed life cycle, weed resistance to herbicides, and interactions between weeds and other organisms (for example, seed predation by insects). A weed seed collection was set up in order to support these research activities. It consists of (1) a seed library, in order to facilitate the identification of the weed species, and (2) a series of weed seed lots that are used for research experiments. Weed seeds harvests are carried out in fields, using protocols that do not endanger the survival of the weed populations. In the future, new techniques based on DNA may become very useful to identify species. However, maintaining a botanical knowledge at the seed, seedling and adult plant stages will remain crucial, in order to maintain knowledge of weeds improve, and thereby to propose integrated and sustainable weed management strategies
    corecore