69 research outputs found

    The Function of MoGlk1 in Integration of Glucose and Ammonium Utilization in Magnaporthe oryzae

    Get PDF
    Hexokinases are conserved proteins functioning in glucose sensing and signaling. The rice blast fungus Magnaporthe oryzae contains several hexokinases, including MoHxk1 (hexokinase) and MoGlk1 (glucokinase) encoded respectively by MoHXK1 and MoGLK1 genes. The heterologous expression of MoGlk1 and MoHxk1 in Saccharomyces cerevisiae confirmed their conserved functions. Disruption of MoHXK1 resulted in growth reduction in medium containing fructose as the sole carbon source, whereas disruption of MoGLK1 did not cause the similar defect. However, the ΔMoglk1 mutant displayed decreased proton extrusion and a lower biomass in the presence of ammonium, suggesting a decline in the utilization of ammonium. Additionally, the MoGLK1 allele lacking catalytic activity restored growth to the ΔMoglk1 mutant. Moreover, the expression of MoPMA1 encoding a plasma membrane H+-ATPase decreased in the ΔMoglk1 mutant that can be suppressed by glucose and G-6-P. Thus, MoGlk1, but not MoHxk1, regulates ammonium utilization through a mechanism that is independent from its catalytic activity

    Maximal Extraction of Biological Information from Genetic Interaction Data

    Get PDF
    Targeted genetic perturbation is a powerful tool for inferring gene function in model organisms. Functional relationships between genes can be inferred by observing the effects of multiple genetic perturbations in a single strain. The study of these relationships, generally referred to as genetic interactions, is a classic technique for ordering genes in pathways, thereby revealing genetic organization and gene-to-gene information flow. Genetic interaction screens are now being carried out in high-throughput experiments involving tens or hundreds of genes. These data sets have the potential to reveal genetic organization on a large scale, and require computational techniques that best reveal this organization. In this paper, we use a complexity metric based in information theory to determine the maximally informative network given a set of genetic interaction data. We find that networks with high complexity scores yield the most biological information in terms of (i) specific associations between genes and biological functions, and (ii) mapping modules of co-functional genes. This information-based approach is an automated, unsupervised classification of the biological rules underlying observed genetic interactions. It might have particular potential in genetic studies in which interactions are complex and prior gene annotation data are sparse

    Identification of the CRE-1 Cellulolytic Regulon in Neurospora crassa

    Get PDF
    Background: In filamentous ascomycete fungi, the utilization of alternate carbon sources is influenced by the zinc finger transcription factor CreA/CRE-1, which encodes a carbon catabolite repressor protein homologous to Mig1 from Saccharomyces cerevisiae. In Neurospora crassa, deletion of cre-1 results in increased secretion of amylase and b-galactosidase. Methodology/Principal Findings: Here we show that a strain carrying a deletion of cre-1 has increased cellulolytic activity and increased expression of cellulolytic genes during growth on crystalline cellulose (Avicel). Constitutive expression of cre-1 complements the phenotype of a N. crassa Dcre-1 strain grown on Avicel, and also results in stronger repression of cellulolytic protein secretion and enzyme activity. We determined the CRE-1 regulon by investigating the secretome and transcriptome of a Dcre-1 strain as compared to wild type when grown on Avicel versus minimal medium. Chromatin immunoprecipitation-PCR of putative target genes showed that CRE-1 binds to only some adjacent 59-SYGGRG-39 motifs, consistent with previous findings in other fungi, and suggests that unidentified additional regulatory factors affect CRE-1 binding to promoter regions. Characterization of 30 mutants containing deletions in genes whose expression level increased in a Dcre-1 strain under cellulolytic conditions identified novel genes that affect cellulase activity and protein secretion

    A Genome-Wide Immunodetection Screen in S. cerevisiae Uncovers Novel Genes Involved in Lysosomal Vacuole Function and Morphology

    Get PDF
    Vacuoles of yeast Saccharomyces cerevisiae are functionally analogous to mammalian lysosomes. Both are cellular organelles responsible for macromolecular degradation, ion/pH homeostasis, and stress survival. We hypothesized that undefined gene functions remain at post-endosomal stage of vacuolar events and performed a genome-wide screen directed at such functions at the late endosome and vacuole interface – ENV genes. The immunodetection screen was designed to identify mutants that internally accumulate precursor form of the vacuolar hydrolase carboxypeptidase Y (CPY). Here, we report the uncovering and initial characterizations of twelve ENV genes. The small size of the collection and the lack of genes previously identified with vacuolar events are suggestive of the intended exclusive functional interface of the screen. Most notably, the collection includes four novel genes ENV7, ENV9, ENV10, and ENV11, and three genes previously linked to mitochondrial processes – MAM3, PCP1, PPE1. In all env mutants, vesicular trafficking stages were undisturbed in live cells as assessed by invertase and active α-factor secretion, as well as by localization of the endocytic fluorescent marker FM4-64 to the vacuole. Several mutants exhibit defects in stress survival functions associated with vacuoles. Confocal fluorescence microscopy revealed the collection to be significantly enriched in vacuolar morphologies suggestive of fusion and fission defects. These include the unique phenotype of lumenal vesicles within vacuoles in the novel env9Δ mutant and severely fragmented vacuoles upon deletion of GET4, a gene recently implicated in tail anchored membrane protein insertion. Thus, our results establish new gene functions in vacuolar function and morphology, and suggest a link between vacuolar and mitochondrial events

    Memory in Microbes: Quantifying History-Dependent Behavior in a Bacterium

    Get PDF
    Memory is usually associated with higher organisms rather than bacteria. However, evidence is mounting that many regulatory networks within bacteria are capable of complex dynamics and multi-stable behaviors that have been linked to memory in other systems. Moreover, it is recognized that bacteria that have experienced different environmental histories may respond differently to current conditions. These “memory” effects may be more than incidental to the regulatory mechanisms controlling acclimation or to the status of the metabolic stores. Rather, they may be regulated by the cell and confer fitness to the organism in the evolutionary game it participates in. Here, we propose that history-dependent behavior is a potentially important manifestation of memory, worth classifying and quantifying. To this end, we develop an information-theory based conceptual framework for measuring both the persistence of memory in microbes and the amount of information about the past encoded in history-dependent dynamics. This method produces a phenomenological measure of cellular memory without regard to the specific cellular mechanisms encoding it. We then apply this framework to a strain of Bacillus subtilis engineered to report on commitment to sporulation and degradative enzyme (AprE) synthesis and estimate the capacity of these systems and growth dynamics to ‘remember’ 10 distinct cell histories prior to application of a common stressor. The analysis suggests that B. subtilis remembers, both in short and long term, aspects of its cell history, and that this memory is distributed differently among the observables. While this study does not examine the mechanistic bases for memory, it presents a framework for quantifying memory in cellular behaviors and is thus a starting point for studying new questions about cellular regulation and evolutionary strategy
    corecore