208 research outputs found

    Full spectrum of vitamin D immunomodulation in multiple sclerosis: mechanisms and therapeutic implications.

    Get PDF
    Vitamin D deficiency has been associated with the risk of multiple sclerosis, disease activity and progression. Results from in vitro experiments, animal models and analysis of human samples from randomized controlled trials provide comprehensive data illustrating the pleiotropic actions of Vitamin D on the immune system. They globally result in immunomodulation by decreasing differentiation of effector T and B cells while promoting regulatory subsets. Vitamin D also modulates innate immune cells such as macrophages, monocytes and dendritic cells, and acts at the level of the blood-brain barrier reducing immune cell trafficking. Vitamin D exerts additional activity within the central nervous system reducing microglial and astrocytic activation. The immunomodulatory role of Vitamin D detected in animal models of multiple sclerosis has suggested its potential therapeutic use for treating multiple sclerosis. In this review, we focus on recent published data describing the biological effects of Vitamin D in animal models of multiple sclerosis on immune cells, blood-brain barrier function, activation of glial cells and its potential neuroprotective effects. Based on the current knowledge, we also discuss optimization of therapeutic interventions with Vitamin D in patients with multiple sclerosis, as well as new technologies allowing in-depth analysis of immune cell regulations by vitamin D

    SARS-CoV-2 infects epithelial cells of the blood-cerebrospinal fluid barrier rather than endothelial cells or pericytes of the blood-brain barrier.

    Get PDF
    BACKGROUND As a consequence of SARS-CoV-2 infection various neurocognitive and neuropsychiatric symptoms can appear, which may persist for several months post infection. However, cell type-specific routes of brain infection and underlying mechanisms resulting in neuroglial dysfunction are not well understood. METHODS Here, we investigated the susceptibility of cells constituting the blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB) of the choroid plexus (ChP) to SARS-CoV-2 infection using human induced pluripotent stem cell (hiPSC)-derived cellular models and a ChP papilloma-derived epithelial cell line as well as ChP tissue from COVID-19 patients, respectively. RESULTS We noted a differential infectibility of hiPSC-derived brain microvascular endothelial cells (BMECs) depending on the differentiation method. Extended endothelial culture method (EECM)-BMECs characterized by a complete set of endothelial markers, good barrier properties and a mature immune phenotype were refractory to SARS-CoV-2 infection and did not exhibit an activated phenotype after prolonged SARS-CoV-2 inoculation. In contrast, defined medium method (DMM)-BMECs, characterized by a mixed endothelial and epithelial phenotype and excellent barrier properties were productively infected by SARS-CoV-2 in an ACE2-dependent manner. hiPSC-derived brain pericyte-like cells (BPLCs) lacking ACE2 expression were not susceptible to SARS-CoV-2 infection. Furthermore, the human choroid plexus papilloma-derived epithelial cell line HIBCPP, modeling the BCSFB was productively infected by SARS-CoV-2 preferentially from the basolateral side, facing the blood compartment. Assessment of ChP tissue from COVID-19 patients by RNA in situ hybridization revealed SARS-CoV-2 transcripts in ChP epithelial and ChP stromal cells. CONCLUSIONS Our study shows that the BCSFB of the ChP rather than the BBB is susceptible to direct SARS-CoV-2 infection. Thus, neuropsychiatric symptoms because of COVID-19 may rather be associated with dysfunction of the BCSFB than the BBB. Future studies should consider a role of the ChP in underlying neuropsychiatric symptoms following SARS-CoV-2 infection

    Early improvement in severely ill patients with pneumonia treated with ceftobiprole:a retrospective analysis of two major trials

    Get PDF
    BackgroundPatients with pneumonia who are elderly or severely ill are at a particularly high risk of mortality. This post hoc retrospective analysis of data from two Phase III studies evaluated early improvement outcomes in subgroups of high-risk patients with community-acquired pneumonia (CAP) and hospital-acquired pneumonia (HAP, excluding ventilator-associated pneumonia [VAP]).MethodsOne study included hospitalised CAP patients randomised to ceftobiprole or ceftriaxone linezolid treatment. The other study included HAP patients, who were randomised to ceftobiprole or ceftazidime plus linezolid treatment. The primary outcome was rate of early clinical response (Day 3 in CAP and Day 4 in HAP patients). Additional outcome measures included clinical cure at a test-of-cure visit, 30-day all-cause mortality and safety.ResultsThe overall high-risk group comprised 398 CAP patients and 307 HAP patients with risk factors present at baseline. The rate of early response was numerically higher in ceftobiprole-treated patients vs comparator-treated patients in the following high-risk groups: CAP patients aged 75years (16.3% difference, 95% confidence interval [CI]: 1.8, 30.8); CAP patients with COPD (20.1% difference, 95% CI: 8.8, 31.1); all high-risk HAP patients (12.5% difference, 95% CI: 3.5, 21.4); HAP patients with >10 baseline comorbidities (15.3% difference, 95% CI: 0.3, 30.4).ConclusionsPrevious studies show that ceftobiprole is an efficacious therapy for patients with pneumonia who are at high risk of poor outcomes. This post hoc analysis provides preliminary evidence that ceftobiprole treatment may have advantages over other antibiotics in terms of achieving early improvement in high-risk patients with HAP (excluding VAP) and in some subgroups of high-risk CAP patients.Trial registration NCT00210964: registered September 21, 2005; NCT00229008: registered September 29, 2005; NCT00326287: registered May 16, 2006

    A concise revised myeloma comorbidity index as a valid prognostic instrument in a large cohort of 801 multiple myeloma patients

    Get PDF
    With growing numbers of elderly multiple myeloma patients, reliable tools to assess their vulnerability are required. The objective of the analysis herein was to develop and validate an easy to use myeloma risk score (revised Myeloma Comorbidity Index) that allows for risk prediction of overall survival and progression-free survival differences in a large patient cohort. We conducted a comprehensive comorbidity, frailty and disability evaluation in 801 consecutive myeloma patients, including comorbidity risks obtained at diagnosis. The cohort was examined within a training and validation set. Multivariate analysis determined renal, lung and Karnofsky Performance Status impairment, frailty and age as significant risks for overall survival. These were combined in a weighted revised Myeloma Comorbidity Index, allowing for the identification of fit (revised Myeloma Comorbidity Index ≤3 [n=247, 30.8%]), intermediate-fit (revised Myeloma Comorbidity Index 4-6 [n=446, 55.7%]) and frail patients (revised Myeloma Comorbidity Index >6 [n=108, 13.5%]): these subgroups, confirmed via validation analysis, showed median overall survival rates of 10.1, 4.4 and 1.2 years, respectively. The revised Myeloma Comorbidity Index was compared to other commonly used comorbidity indices (Charlson Comorbidity Index, Hematopoietic Cell Transplantation-Specific Comorbidity Index, Kaplan-Feinstein Index): if each were divided in risk groups based on 25% and 75% quartiles, highest hazard ratios, best prediction and Brier scores were achieved with the revised Myeloma Comorbidity Index. The advantages of the revised Myeloma Comorbidity Index include its accurate assessment of patients' physical conditions and simple clinical applicability. We propose the revised Myeloma Comorbidity Index to be tested with the “reference” International Myeloma Working Group frailty score in multicenter analyses and future clinical trials

    Pediatric anesthesia in Europe:Variations within uniformity

    Get PDF
    Organization of healthcare strongly differs between European countries and results in country-specific requirements in postgraduate medical training. Within the European Union (EU), the European Board of Anaesthesiology has set recommendations of training for the Specialty of Anaesthesiology including standards for Postgraduate Medical Specialist training including a description for providing service in pediatric anesthesia. However, these standards are advisory and not mandatory. Here we aimed to review the current state and associated challenges of pediatric anesthesia training in Europe. We report an important country-specific variability both in training and regulations of practice of pediatric anesthesia in the EU and in the United Kingdom. The requirements for training in pediatric anesthesia varies between nothing specified (Belgium) or providing anesthesia with direct supervision to a minimum of 50 cases below 5 years of age (Germany) to 3–6 month clinical practice in a specialized pediatric hospital (France). Likewise, the regulations for providing anesthesia to children varies from no regulations at all (Belgium) to age specific requirements and centralization of all children below 4 years of age to specified centers (United Kingdom). Officially recognized pediatric anesthesia fellowship programs are not available in most countries of Europe. It remains unclear if and how country-specific differences in pediatric anesthesia training are associated with clinical outcomes in pediatric perioperative care. There is converging interest and support for the establishment of a European pediatric anesthesia curriculum.</p

    A concise revised Myeloma Comorbidity Index as a valid prognostic instrument in a large cohort of 801 multiple myeloma patients

    Get PDF
    With growing numbers of elderly multiple myeloma patients, reliable tools to assess their vulnerability are required. The objective of the analysis herein was to develop and validate an easy to use myeloma risk score (revised Myeloma Comorbidity Index) that allows for risk prediction of overall survival and progression-free survival differences in a large patient cohort. We conducted a comprehensive comorbidity, frailty and disability evaluation in 801 consecutive myeloma patients, including comorbidity risks obtained at diagnosis. The cohort was examined within a training and validation set. Multivariate analysis determined renal, lung and Karnofsky Performance Status impairment, frailty and age as significant risks for overall survival. These were combined in a weighted revised Myeloma Comorbidity Index, allowing for the identification of fit (revised Myeloma Comorbidity Index ≤3 [n=247, 30.8%]), intermediate-fit (revised Myeloma Comorbidity Index 4-6 [n=446, 55.7%]) and frail patients (revised Myeloma Comorbidity Index >6 [n=108, 13.5%]): these subgroups, confirmed validation analysis, showed median overall survival rates of 10.1, 4.4 and 1.2 years, respectively. The revised Myeloma Comorbidity Index was compared to other commonly used comorbidity indices (Charlson Comorbidity Index, Hematopoietic Cell Transplantation-Specific Comorbidity Index, Kaplan-Feinstein Index): if each were divided in risk groups based on 25% and 75% quartiles, highest hazard ratios, best prediction and Brier scores were achieved with the revised Myeloma Comorbidity Index. The advantages of the revised Myeloma Comorbidity Index include its accurate assessment of patients' physical conditions and simple clinical applicability. We propose the revised Myeloma Comorbidity Index to be tested with the "reference" International Myeloma Working Group frailty score in multicenter analyses and future clinical trials. The study was registered at the German Clinical Trials Register (DRKS-00003868)

    DGK and DZHK position paper on genome editing: basic science applications and future perspective

    Get PDF
    For a long time, gene editing had been a scientific concept, which was limited to a few applications. With recent developments, following the discovery of TALEN zinc-finger endonucleases and in particular the CRISPR/Cas system, gene editing has become a technique applicable in most laboratories. The current gain- and loss-of function models in basic science are revolutionary as they allow unbiased screens of unprecedented depth and complexity and rapid development of transgenic animals. Modifications of CRISPR/Cas have been developed to precisely interrogate epigenetic regulation or to visualize DNA complexes. Moreover, gene editing as a clinical treatment option is rapidly developing with first trials on the way. This article reviews the most recent progress in the field, covering expert opinions gathered during joint conferences on genome editing of the German Cardiac Society (DGK) and the German Center for Cardiovascular Research (DZHK). Particularly focusing on the translational aspect and the combination of cellular and animal applications, the authors aim to provide direction for the development of the field and the most frequent applications with their problems

    Mouse Heterochromatin Adopts Digital Compaction States without Showing Hallmarks of HP1-Driven Liquid-Liquid Phase Separation

    Get PDF
    Mouse cells package heterochromatin into compact foci. Erdel et al. show that these foci lack hallmarks of liquid droplets and rather resemble collapsed polymer globules. Their size, accessibility, and compaction are independent of HP1. They can adopt two distinct folding states that possibly represent the fundamental modes of chromatin compaction
    corecore