5 research outputs found

    Satellite based synthetic aperture radar and optical spatial-temporal information as aid for operational and environmental mine monitoring

    Get PDF
    A sustainable society is a society that satisfies its resource requirements without endangering the sustainability of these resources. The mineral endowment on the African continent is estimated to be the first or second largest of world reserves. Therefore, it is recognised that the African continent still heavily depends on mineral exports as a key contributor to the gross domestic product (GDP) of various countries. These mining activities, however, do introduce primary and secondary environmental degradation factors. They attract communities to these mining areas, light and heavy industrial establishments occur, giving rise to artisanal activities. This study focussed on satellite RS products as an aid to a mine’s operations and the monitoring of its environment. Effective operational mine management and control ensures a more sustainable and profitable lifecycle for mines. Satellite based RS holds the potential to observe the mine and its surrounding areas at high temporal intervals, different spectral wavelengths and spatial resolutions. The combination of SAR and optical information creates a spatial platform to observe and measure the mine’s operations and the behaviour of specific land cover and land use classes over time and contributes to a better understanding of the mining activities and their influence on the environment within a specific geographical area. This study will introduce an integrated methodology to collect, process and analyse spatial information over a specific targeted mine. This methodology utilises a medium resolution land cover base map, derived from Landsat 8, to understand the predominant land cover types of the surrounding area. Using very high resolution mono- and stereoscopic satellite imagery provides a finer scale analysis and identifies changes in features at a smaller scale. Combining these technologies with the synthetic aperture radar (SAR) applications for precise measurement of surface subsidence or upliftment becomes a spatial toolbox for mine management. This study examines a combination of satellite remote sensing products guided by a systematic workflow methodology to integrate spatial results as an aid for mining operations and environmental monitoring. Some of the results that can be highlighted is the successful land cover classification using the Landsat 8 satellite. The land cover that dominated the Kolomela mine area was the “SHRUBLAND/GRASS” class with a 94% coverage and “MINE” class of 2.6%. Sishen mine had a similar dominated land cover characteristic with a “SHRUBLAND/GRASS” class of 90% and “MINE” class of 4.8%. The Pléiades time-series classification analysis was done using three scenes each acquired at a different time interval. The Sishen and Kolomela mine showed especially changes from the bare soil class to the asphalt or mine class. The Pléiades stereoscopic analysis provided volumetric change detection over small, medium, large and recessed areas. Both the Sishen and Kolomela mines demonstrated height profile changes in each selected category. The last category of results focused on the SAR technology to measure within millimetre accuracy the subsidence and upliftment behaviour of surface areas over time. The Royal Bafokeng Platinum tailings pond area was measured using 74 TerraSAR-X scenes. The tailings wall area was confirmed as stable with natural subsidence that occurred in its surrounding area due to seasonal changes of the soil during rainy and dry periods. The Chuquicamata mine as a large open pit copper mine area was analysed using 52 TerraSAR-X scenes. The analysis demonstrated significant vertical surface movement over some of the dumping sites. It is the wish of the researcher that this dissertation and future research scholars will continue to contribute in this scientific field. These contributions can only assist the mining sector to continuously improve its mining operations as well as its monitoring of the primary as well as the secondary environmental impacts to ensure improved sustainability for the next generation.Environmental SciencesM. Sc. (Environmental Science

    Spatial technology as a tool to analyse and combat crime

    Get PDF
    This study explores the utilisation of spatial technologies as a tool to analyse and combat crime. The study deals specifically with remote sensing and its potential for being integrated with geographical information systems (GIS). The integrated spatial approach resulted in the understanding of land use class behaviour over time and its relationship to specific crime incidents per police precinct area. The incorporation of spatial technologies to test criminological theories in practice, such as the ecological theories of criminology, provides the science with strategic value. It proves the value of combining multi-disciplinary scientific fields to create a more advanced platform to understand land use behaviour and its relationship to crime. Crime in South Africa is a serious concern and it impacts negatively on so many lives. The fear of crime, the loss of life, the socio-economic impact of crime, etc. create the impression that the battle against crime has been lost. The limited knowledge base within the law enforcement agencies, limited logistical resources and low retention rate of critical staff all contribute to making the reduction of crime more difficult to achieve. A practical procedure of using remote sensing technology integrated with geographical information systems (GIS), overlaid with geo-coded crime data to provide a spatial technological basis to analyse and combat crime, is illustrated by a practical study of the Tshwane municipality area. The methodology applied in this study required multi-skilled resources incorporating GIS and the understanding of crime to integrate the diverse scientific fields into a consolidated process that can contribute to the combating of crime in general. The existence of informal settlement areas in South Africa stresses the socio-economic problems that need to be addressed as there is a clear correlation of land use data with serious crime incidents in these areas. The fact that no formal cadastre exists for these areas, combined with a great diversity in densification and growth of the periphery, makes analysis very difficult without remote sensing imagery. Revisits over time to assess changes in these areas in order to adapt policing strategies will create an improved information layer for responding to crime. Final computerised maps generated from remote sensing and GIS layers are not the only information that can be used to prevent and combat crime. An important recipe for ultimately successfully managing and controlling crime in South Africa is to strategically combine training of the law enforcement agencies in the use of spatial information with police science. The researcher concludes with the hope that this study will contribute to the improved utilisation of spatial technology to analyse and combat crime in South Africa. The ultimate vision is the expansion of the science of criminology by adding an advanced spatial technology module to its curriculum.Criminology and Security ScienceD.Litt. et Phil. (Criminology

    Accuracy comparison of Pléiades satellite ortho-images using GPS device based GCPs against TerraSAR-X-based GCPs

    Get PDF
    Conducting single frame orthorectification on satellite images to create an ortho-image requires four basic components, namely an image, a geometric sensor model, elevation data (for example a digital elevation model (DEM)) and ground control points (GCPs). For this study, orthorectification entailed the use of a single scene Pléiades primary panchromatic image, applying the Pléiades rigorous geometric model, utilising a high-quality 2 m DEM and using GCPs that were acquired from two different collection methods. The application of these different GCPs to the execution of orthorectification encompassed the aim of this paper, which was to investigate and compare the positional accuracies of ortho-images under two scenarios. Firstly, GCPs were manually collected through fieldwork utilising a Trimble GeoExplorer 6000 series handheld GPS device and secondly, by utilising TerraSAR-X based GCPs that were acquired from Airbus Defence and Space. The objective of this study was to determine the geolocation accuracy of a high-resolution satellite ortho-image when different types of ground control are used. This required the execution of two orthorectification tests where only the type of GCPs differed. The results of these tests were interesting since it highlighted the difference in positional accuracy when utilising various sources of ground control to perform orthorectification on satellite imagery. The comparison results showed that utilising the manual GCPs produced a better positional accurate ortho-image as opposed to using the TerraSAR-X based GCPs. Nonetheless, the TerraSAR-X based GCPs still produced a sub 2 m accurate ortho-image, which is more than sufficient for the production of most geospatial products.Keywords: orthorectification, digital elevation model (DEM), ground control point (GCP), high-resolution satellite imagery, TerraSAR-X based GCPs, WorldDEM™, Airbus Defence and Spac
    corecore