3 research outputs found

    The systolic constant of orientable Bieberbach 3-manifolds

    Full text link
    A compact manifold is called Bieberbach if it carries a flat Riemannian metric. Bieberbach manifolds are aspherical, therefore the supremum of their systolic ratio, over the set of Riemannian metrics, is finite by a fundamental result of M. Gromov. We study the optimal systolic ratio of compact of 33-dimensional orientable Bieberbach manifolds which are not tori, and prove that it cannot be realized by a flat metric. We also highlight a metric that we construct on one type of such manifolds (C2C_2) which has interesting geometric properties : it is extremal in its conformal class and the systole is realized by "very many" geodesics.Comment: 18 pages, 3 figure

    Constante systolique et variétés plates

    No full text
    In this thesis we study the systolic geometry of Bieberbach manifolds. The \emph{systole} of a compact non simply connected Riemannian manifold (Mn,g)(M^n,g) is the smallest length of a non-contractible closed curve; the \emph{systolic ratio} is the quotient (systole)n/volume(\mathrm{systole})^n/\mathrm{volume}. M. Gromov proved that if MnM^n is essential, there exists a positive constant c(M)c(M) such that for any metric gg on MnM^n we have: Vol(M,g)≥c(M)Sys(M,g)nVol(M,g) \geq c(M) Sys(M,g)^n. All compact surfaces (except S2S^2) are essential, and the theorem of Gromov is a generalisation of the same results for the torus T2T^2 (C. Loewner), for the projective plane (M. Pu) and for the Klein bottle (C. Bavard). The constant c(M)c(M) is well known in the case of these manifolds, but in higher dimension we don't have much information. We study the optimal systolic ratio of 33-dimensional Bieberbach manifolds that are not homeomorphic to a torus, and prove that it cannot be realized by a flat metric.Dans cette thèse on étudie la géométrie systolique des variétés de Bieberbach. La \emph{systole} d'une variété riemannienne compacte et non simplement connexe (Mn,g)(M^n,g) est l'infimum des longueurs des courbes fermées non contractiles; le \emph{rapport systolique} est le quotient (systole)n/volume(\mathrm{systole})^n/\mathrm{volume}. Un résultat fondamental de Gromov assure que si MnM^n est essentielle, il existe une constante c(M)c(M) strictement positive telle que, pour toute métrique gg sur MnM^n: Vol(M,g)≥c(M)Sys(M,g)nVol(M,g) \geq c(M) Sys(M,g)^n. Les surfaces compactes autres que S2S^2 sont essentielles, et le théorème de Gromov est une généralisation profonde des mêmes résultats pour le tore T2T^2 (C. Loewner), pour le plan projectif (M. Pu) et pour la bouteille de Klein (C. Bavard). Pour ces variétés la constante c(M)c(M) est bien connu mais en dimension supérieure, on ne connait pratiquement rien en dehors de l'existence de cette constante. Nous nous intéressons aux variétés de Bieberbach de dimension 3, c'est à dire aux variétés compactes de dimension 3 qui portent une métrique riemannienne plate, qui ne sont pas des tores et démontrons que les métriques plates ne sont pas optimales pour le rapport systolique
    corecore