112 research outputs found
QED effective action at finite temperature
The QED effective Lagrangian in the presence of an arbitrary constant
electromagnetic background field at finite temperature is derived in the
imaginary-time formalism to one-loop order. The boundary conditions in
imaginary time reduce the set of gauge transformations of the background field,
which allows for a further gauge invariant and puts restrictions on the choice
of gauge. The additional invariant enters the effective action by a topological
mechanism and can be identified with a chemical potential; it is furthermore
related to Debye screening. In concordance with the real-time formalism, we do
not find a thermal correction to Schwinger's pair-production formula. The
calculation is performed on a maximally Lorentz covariant and gauge invariant
stage.Comment: 9 pages, REVTeX, 1 figure, typos corrected, references added, final
version to appear in Phys. Rev.
Light Cone Condition for a Thermalized QED Vacuum
Within the QED effective action approach, we study the propagation of
low-frequency light at finite temperature. Starting from a general effective
Lagrangian for slowly varying fields whose structure is solely dictated by
Lorentz covariance and gauge invariance, we derive the light cone condition for
light propagating in a thermalized QED vacuum. As an application, we calculate
the velocity shifts, i.e., refractive indices of the vacuum, induced by
thermalized fermions to one loop. We investigate various temperature domains
and also include a background magnetic field. While low-temperature effects to
one loop are exponentially damped by the electron mass, there exists a maximum
velocity shift of in the
intermediate-temperature domain .Comment: 9 pages, 3 figures, REVTeX, typos corrected, final version to appear
in Phys. Rev.
Generalizations of the thermal Bogoliubov transformation
The thermal Bogoliubov transformation in thermo field dynamics is generalized
in two respects. First, a generalization of the --degree of freedom to
tilde non--conserving representations is considered. Secondly, the usual
Bogoliubov matrix is extended to a matrix including
mixing of modes with non--trivial multiparticle correlations. The analysis is
carried out for both bosons and fermions.Comment: 20 pages, Latex, Nordita 93/33
QED Effective Action at Finite Temperature: Two-Loop Dominance
We calculate the two-loop effective action of QED for arbitrary constant
electromagnetic fields at finite temperature T in the limit of T much smaller
than the electron mass. It is shown that in this regime the two-loop
contribution always exceeds the influence of the one-loop part due to the
thermal excitation of the internal photon. As an application, we study light
propagation and photon splitting in the presence of a magnetic background field
at low temperature. We furthermore discover a thermally induced contribution to
pair production in electric fields.Comment: 34 pages, 4 figures, LaTe
Neutrino self-energy and dispersion in a medium with magnetic field
We calculate the one-loop thermal self-energy of a neutrino in a constant and
homogeneous magnetic field to all orders in the magnetic field strength using
Schwinger's proper time method. We obtain the dispersion relation under various
conditions.Comment: 17 pp, RevTeX, one figur
THERMAL EFFECTS ON THE CATALYSIS BY A MAGNETIC FIELD
We show that the formation of condensates in the presence of a constant
magnetic field in 2+1 dimensions is extremely unstable. It disappears as soon
as a heat bath is introduced with or without a chemical potential. We point out
some new nonanalytic behavior that develops in this system at finite
temperature.Comment: 10 pages, plain Te
Effective Electromagnetic Lagrangian at Finite Temperature and Density in the Electroweak Model
Using the exact propagators in a constant magnetic field, the effective
electromagnetic Lagrangian at finite temperature and density is calculated to
all orders in the field strength B within the framework of the complete
electroweak model, in the weak coupling limit. The partition function and free
energy are obtained explicitly and the finite temperature effective coupling is
derived in closed form. Some implications of this result, potentially
interesting to astrophysics and cosmology, are discussed.Comment: 14 pages, Revtex
- …