15 research outputs found

    Experimental Observations on the Thermal Degradation of a Porous Bed of Tires

    Get PDF
    In this paper, an experimental study on the forward combustion of a bed of tires and refractory briquettes is presented. Temperature measurements within the reactor were obtained as a function of time as well as the evolution of the fuel bed. The products of combustion were cooled down and usable liquid fuel was recovered and measured. The reaction was found to become unstable for fuel concentrations lower than 50%. The results show that the airflow and tire concentration define different modes of combustion while the reaction remains oxygen limited. Oil production is maximized when an increase in airflow leads to a transition from a rate-limited reaction to a heat transfer-limited propagation. Variation of the tire concentration shows the importance of the inert in achieving high conversion rates

    Modeling of One-Dimensional Smoldering of Polyurethane in Microgravity Conditions

    Get PDF
    Results are presented from a model of forward smoldering combustion of polyurethane foam in microgravity. The transient one-dimensional numerical-model is based on that developed at the University of Texas at Austin. The conservation equations of energy, species and mass in the porous solid and in the gas phases are numerically solved. The solid and the gas phase are not assumed to be in thermal or in chemical equilibrium. The chemical reactions modeled consist of foam oxidation and pyrolysis reactions, as well as char oxidation. The model has been modified to account for new polyurethane kinetics parameters and radial heat losses to the surrounding environment. The kinetics parameters are extracted from thermogravimetric analyses published in the literature and using Genetic Algorithms as the optimization technique. The model results are compared with previous tests of forward smoldering combustion in microgravity conducted aboard the NASA Space Shuttle. The model calculates well the propagation velocities and the overall smoldering characteristics. Direct comparison of the solution with the experimental temperature profiles shows that the model predicts well these profiles at high temperature, but not as well at lower temperatures. The effect of inlet gas velocity is examined and the minimum airflow for ignition identified. It is remarkable that this one-dimensional model with simplified kinetics is capable of predicting cases of smolder ignition but with no self-propagation away from the igniter region. The model is used for better understanding of the controlling mechanisms of smolder combustion for the purpose of fire safety, both in microgravity and normal gravity, and to extend the unique microgravity data to wider conditions avoiding the high cost of space-based experiments
    corecore