200 research outputs found

    Resistance and relief: The wit and woes of early twentieth century folk and country music

    Get PDF
    This is the publisher's version, also available electronically from http://www.degruyter.com/view/j/humr.2010.23.issue-2/humr.2010.008/humr.2010.008.xml.Folk and country music were rural-based music styles that developed during the pre-rock decades of the early twentieth century. Largely performed by working-class practitioners for working-class audiences, these genres captured the hardships of poor constituencies through markedly different means of humorous expression. Whereas folk employed an often strident satire in resisting perceived oppressors, country looked inwards, using self-deprecating and personalized humor as a shield and relief against outside forces. Narrative tall-tales and regional vernacular were ubiquitous features of folk and country humor, and both crafted struggling characters to serve as illustrative metaphors for broader class concerns. In surveying these music forms in their infancy—as well as their key players—we are connected to the roots of American humor, as well as subsequent developments in rock & roll rebellion

    A Penrose polynomial for embedded graphs

    Get PDF
    We extend the Penrose polynomial, originally defined only for plane graphs, to graphs embedded in arbitrary surfaces. Considering this Penrose polynomial of embedded graphs leads to new identities and relations for the Penrose polynomial which can not be realized within the class of plane graphs. In particular, by exploiting connections with the transition polynomial and the ribbon group action, we find a deletion-contraction-type relation for the Penrose polynomial. We relate the Penrose polynomial of an orientable checkerboard colourable graph to the circuit partition polynomial of its medial graph and use this to find new combinatorial interpretations of the Penrose polynomial. We also show that the Penrose polynomial of a plane graph G can be expressed as a sum of chromatic polynomials of twisted duals of G. This allows us to obtain a new reformulation of the Four Colour Theorem

    A note on recognizing an old friend in a new place:list coloring and the zero-temperature Potts model

    Get PDF
    Here we observe that list coloring in graph theory coincides with the zero-temperature antiferromagnetic Potts model with an external field. We give a list coloring polynomial that equals the partition function in this case. This is analogous to the well-known connection between the chromatic polynomial and the zero-temperature, zero-field, antiferromagnetic Potts model. The subsequent cross fertilization yields immediate results for the Potts model and suggests new research directions in list coloring

    Separability and the genus of a partial dual

    Full text link
    Partial duality generalizes the fundamental concept of the geometric dual of an embedded graph. A partial dual is obtained by forming the geometric dual with respect to only a subset of edges. While geometric duality preserves the genus of an embedded graph, partial duality does not. Here we are interested in the problem of determining which edge sets of an embedded graph give rise to a partial dual of a given genus. This problem turns out to be intimately connected to the separability of the embedded graph. We determine how separability is related to the genus of a partial dual. We use this to characterize partial duals of graphs embedded in the plane, and in the real projective plane, in terms of a particular type of separation of an embedded graph. These characterizations are then used to determine a local move relating all partially dual graphs in the plane and in the real projective plane

    Functional genomics via metabolic footprinting: monitoring metabolite secretion by Escherichia coli tryptophan metabolism mutants using FT-IR and direct injection electrospray mass spectrometry

    Get PDF
    We sought to test the hypothesis that mutant bacterial strains could be discriminated from each other on the basis of the metabolites they secrete into the medium (their ‘metabolic footprint’), using two methods of ‘global’ metabolite analysis (FT–IR and direct injection electrospray mass spectrometry). The biological system used was based on a published study of Escherichia coli tryptophan mutants that had been analysed and discriminated by Yanofsky and colleagues using transcriptome analysis. Wild-type strains supplemented with tryptophan or analogues could be discriminated from controls using FT–IR of 24 h broths, as could each of the mutant strains in both minimal and supplemented media. Direct injection electrospray mass spectrometry with unit mass resolution could also be used to discriminate the strains from each other, and had the advantage that the discrimination required the use of just two or three masses in each case. These were determined via a genetic algorithm. Both methods are rapid, reagentless, reproducible and cheap, and might beneficially be extended to the analysis of gene knockout libraries
    corecore