31 research outputs found

    The cohort of young Danish farmers – A longitudinal study of the health effects of farming exposure

    Get PDF
    Working in agriculture poses a serious risk for development of respiratory diseases, especially when working in animal housing. Animal workers are exposed to a mixture of organic and inorganic dust together with fumes and gases, including allergens and microbial-associated molecular patterns with a potentially major impact on respiratory health and the immune system. Exposure to microbial agents in animal housing is associated with an increased prevalence of respiratory symptoms, including bronchial hyperresponsiveness, accelerated lung function decline, and neutrophil-mediated inflammation. These clinical findings are often seen without IgE-mediated sensitization. In fact it has been found in recent studies that the prevalence of atopic sensitization and atopic asthma is low among farmers compared with other populations. The SUS study was designed to identify the type and occurrence of respiratory symptoms and disease, and to investigate risk factors for respiratory disorders and changes in lung function among young farming students. The cohort of young Danish farmers was established in 1992/1994 and followed up in 2007/2008 with a participation rate of 51.7%. The cohort consists of 1734 male farming students, 230 female farming students, and 407 army recruits as controls

    Dust exposure and the impact on hospital readmission of farming and wood industry workers for asthma and chronic obstructive pulmonary disease (COPD)

    Get PDF
    Objectives It is still not well established how occupational air pollutants affect the prognosis of asthma or chronic obstructive pulmonary disease (COPD). This study uses nationwide Danish registers and quantitative dust industry exposure matrices (IEM) for the farming and wood industries to estimate whether previous year dust exposure level impacts hospital readmissions for workers diagnosed with asthma or COPD. Methods We identified all individuals with a first diagnosis of either asthma (769 individuals) or COPD (342 individuals) between 1997 and 2007 and followed them until the next hospital admission for asthma or COPD, emigration, death or 31 December 2007. We included only individuals who worked in either the wood or farming industries at least one year during follow-up. We used logistic regression analysis to investigate associations between dust exposure level in the previous year and hospital readmission, adjusting for sex, age, time since first diagnosis, socioeconomic status, and labor force participation. Results Asthma readmissions for individuals with low and high dust exposure were increased [adjusted rate ratio (RR adj) 2.52, 95% confidence interval (CI) 1.45-4.40] and RR adj2.64 (95% CI 1.52-4.60), respectively. For COPD readmission, the risk estimates were RR adj1.36 (95% CI 0.57-3.23) for low and RR adj1.20 (95% CI 0.49-2.95) for high exposure level in the previous year. For asthma readmission, stratified analyses by type of dust exposure during follow-up showed increased risks for both wood dust [RR adj2.67 (95% CI 1.35-5.26) high exposure level] and farming dust [RR adj3.59 (95% CI 1.11-11.59) high exposure level]. No clear associations were seen for COPD readmissions. Conclusions This study indicates that exposure to wood or farm dust in the previous year increases the risk of hospital readmission for individuals with asthma but not for those with COPD

    Cow Farmers’ Homes Host More Diverse Airborne Bacterial Communities Than Pig Farmers’ Homes and Suburban Homes

    Get PDF
    Living on a farm has been linked to a lower risk of immunoregulatory disorders, such as asthma, allergy, and inflammatory bowel disease. It is hypothesized that a decrease in the diversity and composition of indoor microbial communities is a sensible explanation for the upsurge in immunoregulatory diseases, with airborne bacteria contributing to this protective effect. However, the composition of this potentially beneficial microbial community in various farm and suburban indoor environments is still to be characterized. We collected settled airborne dust from stables and the associated farmers’ homes and from suburban homes using electrostatic dust collectors (EDCs) over a period of 14 days. Then, quantitative PCR (qPCR) was used to assess bacterial abundance. The V3–V4 region of the bacterial 16S rRNA gene was amplified and sequenced using Ilumina MiSeq in order to assess microbial diversity. The Divisive Amplicon Denoising Algorithm (DADA2) algorithm was used for the inference of amplicon sequence variants from amplicon data. Airborne bacteria were significantly more abundant in farmers’ indoor environments than in suburban homes (p < 0.001). Cow farmers’ homes had significantly higher bacterial diversity than pig farmers’ and suburban homes (p < 0.001). Bacterial taxa, such as Firmicutes, Prevotellaceae, Lachnospiraceae, and Lactobacillus were significantly more abundant in farmers’ homes than suburban homes, and the same was true for beneficial intestinal bacterial species, such as Lactobacillus amylovorus, Eubacterium hallii, and Faecalibacterium prausnitzii. Furthermore, we found a higher similarity between bacterial communities in individual farmers’ homes and their associated cow stables than for pig stables. Our findings contribute with important knowledge on bacterial composition, abundance, and diversity in different environments, which is highly valuable in the discussion on how microbial exposure may contribute to the development of immune-mediated diseases in both children and adults.publishedVersio

    Endotoxins, Glucans and Other Microbial Cell Wall Agents

    No full text
    During the last decades an increasing interest in microbial cell wall agents has been established, since exposure to these agents has been linked to a wide range of adverse and beneficial health effects. The term microbial cell wall agents refers to a group of molecules of different composition that are integral structural components of microorganisms like gram-negative and gram positive bacteria and fungi. The available information on exposure characteristics for these cell wall agents within indoor environments and their associated health effects is summarized in this chapter

    Endotoxins, Glucans and Other Microbial Cell Wall Agents

    No full text
    During the last decades an increasing interest in microbial cell wall agents has been established, since exposure to these agents has been linked to a wide range of adverse and beneficial health effects. The term microbial cell wall agents refers to a group of molecules of different composition that are integral structural components of microorganisms like gram-negative and gram positive bacteria and fungi. The available information on exposure characteristics for these cell wall agents within indoor environments and their associated health effects is summarized in this chapter

    The cohort of young Danish farmers &amp;ndash; A longitudinal study of the health effects of farming exposure

    No full text
    Grethe Elholm1,2, &amp;Oslash;yvind Omland1,2, Vivi Schl&amp;uuml;nssen1, Charlotte Hjort3, Ioannis Basinas1, Torben Sigsgaard11Department of Environmental and Occupational Medicine, Institute of Public Health, Aarhus University; 2Department of Occupational Health, Aalborg Hospital, Aarhus University Hospital; 3Regional Hospital Viborg, Skive, KjellerupAbstract: Working in agriculture poses a serious risk for development of respiratory diseases, especially when working in animal housing. Animal workers are exposed to a mixture of organic and inorganic dust together with fumes and gases, including allergens and microbial-associated molecular patterns with a potentially major impact on respiratory health and the immune system. Exposure to microbial agents in animal housing is associated with an increased prevalence of respiratory symptoms, including bronchial hyperresponsiveness, accelerated lung function decline, and neutrophil-mediated inflammation. These clinical findings are often seen without IgE-mediated sensitization. In fact it has been found in recent studies that the prevalence of atopic sensitization and atopic asthma is low among farmers compared with other populations. The SUS study was designed to identify the type and occurrence of respiratory symptoms and disease, and to investigate risk factors for respiratory disorders and changes in lung function among young farming students. The cohort of young Danish farmers was established in 1992/1994 and followed up in 2007/2008 with a participation rate of 51.7%. The cohort consists of 1734 male farming students, 230 female farming students, and 407 army recruits as controls.Keywords: respiratory health, atopy, asthma, rhinitis, lung function, farming environment, occupational exposure, cohort stud
    corecore