114 research outputs found

    Tremorgenesis: a new conceptual scheme using reciprocally innervated circuit of neurons

    Get PDF
    Neural circuits controlling fast movements are inherently unsteady as a result of their reciprocal innervation. This instability is enhanced by increased membrane excitability. Recent studies indicate that the loss of external inhibition is an important factor in the pathogenesis of several tremor disorders such as essential tremor, cerebellar kinetic tremor or parkinsonian tremor. Shaikh and colleagues propose a new conceptual scheme to analyze tremor disorders. Oscillations are simulated by changing the intrinsic membrane properties of burst neurons. The authors use a model neuron of Hodgkin-Huxley type with added hyperpolarization activated cation current (Ih), low threshold calcium current (It), and GABA/glycine mediated chloride currents. Post-inhibitory rebound is taken into account. The model includes a reciprocally innervated circuit of neurons projecting to pairs of agonist and antagonist muscles. A set of four burst neurons has been simulated: inhibitory agonist, inhibitory antagonist, excitatory agonist, and excitatory antagonist. The model fits well with the known anatomical organization of neural circuits for limb movements in premotor/motor areas, and, interestingly, this model does not require any structural modification in the anatomical organization or connectivity of the constituent neurons. The authors simulate essential tremor when Ih is increased. Membrane excitability is augmented by up-regulating Ih and It. A high level of congruence with the recordings made in patients exhibiting essential tremor is reached. These simulations support the hypothesis that increased membrane excitability in potentially unsteady circuits generate oscillations mimicking tremor disorders encountered in daily practice. This new approach opens new perspectives for both the understanding and the treatment of neurological tremor. It provides the rationale for decreasing membrane excitability by acting on a normal ion channel in a context of impaired external inhibition

    Clustering of dystonia in some pedigrees with autosomal dominant essential tremor suggests the existence of a distinct subtype of essential tremor

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is an ongoing debate whether essential tremor (ET) represents a monosymptomatic disorder or other neurologic symptoms are compatible with the diagnosis of ET. Many patients with clinically definite ET develop dystonia. It remains unknown whether tremor associated with dystonia represent a subtype of ET. We hypothesized that ET with dystonia represents a distinct subtype of ET.</p> <p>Methods</p> <p>We studied patients diagnosed with familial ET and dystonia. We included only those patients whose first-degree relatives met diagnostic criteria for ET or dystonia with tremor. This cohort was ascertained for the presence of focal, segmental, multifocal, hemidystonia or generalized dystonia, and ET.</p> <p>Results</p> <p>We included 463 patients from 97 kindreds with autosomal dominant mode of inheritance (AD), defined by the vertical transmission of the disease. ET was the predominant phenotype in every ascertained family and each was phenotypically classified as AD ET. "Pure" ET was present in 365 individuals. Focal or segmental dystonia was present in 98 of the 463 patients; 87 of the 98 patients had ET associated with dystonia, one had dystonic tremor and ten had isolated dystonia. The age of onset and tremor severity did not differ between patients with "pure" ET and ET associated with dystonia. We did not observe a random distribution of dystonia in AD ET pedigrees and all patients with dystonia associated with ET were clustered in 28% of all included pedigrees (27/97, p < 0.001).</p> <p>Conclusions</p> <p>Our results suggest that familial ET associated with dystonia may represent a distinct subtype of ET.</p

    Recognition of Handwriting from Electromyography

    Get PDF
    Handwriting – one of the most important developments in human culture – is also a methodological tool in several scientific disciplines, most importantly handwriting recognition methods, graphology and medical diagnostics. Previous studies have relied largely on the analyses of handwritten traces or kinematic analysis of handwriting; whereas electromyographic (EMG) signals associated with handwriting have received little attention. Here we show for the first time, a method in which EMG signals generated by hand and forearm muscles during handwriting activity are reliably translated into both algorithm-generated handwriting traces and font characters using decoding algorithms. Our results demonstrate the feasibility of recreating handwriting solely from EMG signals – the finding that can be utilized in computer peripherals and myoelectric prosthetic devices. Moreover, this approach may provide a rapid and sensitive method for diagnosing a variety of neurogenerative diseases before other symptoms become clear

    Personalised profiling to identify clinically relevant changes in tremor due to multiple sclerosis

    Get PDF
    Background: There is growing interest in sensor-based assessment of upper limb tremor in multiple sclerosis and other movement disorders. However, previously such assessments have not been found to offer any improvement over conventional clinical observation in identifying clinically relevant changes in an individual's tremor symptoms, due to poor test-retest repeatability. Method: We hypothesised that this barrier could be overcome by constructing a tremor change metric that is customised to each individual's tremor characteristics, such that random variability can be distinguished from clinically relevant changes in symptoms. In a cohort of 24 people with tremor due to multiple sclerosis, the newly proposed metrics were compared against conventional clinical and sensor-based metrics. Each metric was evaluated based on Spearman rank correlation with two reference metrics extracted from the Fahn-Tolosa-Marin Tremor Rating Scale: a task-based measure of functional disability (FTMTRS B) and the subject's self-assessment of the impact of tremor on their activities of daily living (FTMTRS C). Results: Unlike the conventional sensor-based and clinical metrics, the newly proposed ’change in scale’ metrics presented statistically significant correlations with changes in self-assessed impact of tremor (max R2>0.5,p< 0.05 after correction for false discovery rate control). They also outperformed all other metrics in terms of correlations with changes in task-based functional performance (R2=0.25 vs. R2=0.15 for conventional clinical observation, both p< 0.05).Conclusions: The proposed metrics achieve an elusive goal of sensor-based tremor assessment: improving on conventional visual observation in terms of sensitivity to change. Further refinement and evaluation of the proposed techniques is required, but our core findings imply that the main barrier to translational impact for this application can be overcome. Sensor-based tremor assessments may improve personalised treatment selection and the efficiency of clinical trials for new treatments by enabling greater standardisation and sensitivity to clinically relevant changes in symptoms

    The mystery of the cerebellum: clues from experimental and clinical observations

    Get PDF
    Abstract The cerebellum has a striking homogeneous cytoarchitecture and participates in both motor and non-motor domains. Indeed, a wealth of evidence from neuroanatomical, electrophysiological, neuroimaging and clinical studies has substantially modified our traditional view on the cerebellum as a sole calibrator of sensorimotor functions. Despite the major advances of the last four decades of cerebellar research, outstanding questions remain regarding the mechanisms and functions of the cerebellar circuitry. We discuss major clues from both experimental and clinical studies, with a focus on rodent models in fear behaviour, on the role of the cerebellum in motor control, on cerebellar contributions to timing and our appraisal of the pathogenesis of cerebellar tremor. The cerebellum occupies a central position to optimize behaviour, motor control, timing procedures and to prevent body oscillations. More than ever, the cerebellum is now considered as a major actor on the scene of disorders affecting the CNS, extending from motor disorders to cognitive and affective disorders. However, the respective roles of the mossy fibres, the climbing fibres, cerebellar cortex and cerebellar nuclei remains unknown or partially known at best in most cases. Research is now moving towards a better definition of the roles of cerebellar modules and microzones. This will impact on the management of cerebellar disorders
    • …
    corecore