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Abstract

Background: There is growing interest in sensor-based assessment of upper limb tremor in multiple sclerosis and
other movement disorders. However, previously such assessments have not been found to offer any improvement
over conventional clinical observation in identifying clinically relevant changes in an individual’s tremor symptoms,
due to poor test-retest repeatability.

Method: We hypothesised that this barrier could be overcome by constructing a tremor change metric that is
customised to each individual’s tremor characteristics, such that random variability can be distinguished from
clinically relevant changes in symptoms. In a cohort of 24 people with tremor due to multiple sclerosis, the newly
proposed metrics were compared against conventional clinical and sensor-based metrics. Each metric was evaluated
based on Spearman rank correlation with two reference metrics extracted from the Fahn-Tolosa-Marin Tremor Rating
Scale: a task-based measure of functional disability (FTMTRS B) and the subject’s self-assessment of the impact of
tremor on their activities of daily living (FTMTRS C).

Results: Unlike the conventional sensor-based and clinical metrics, the newly proposed ’change in scale’ metrics
presented statistically significant correlations with changes in self-assessed impact of tremor (max R2 > 0.5, p < 0.05
after correction for false discovery rate control). They also outperformed all other metrics in terms of correlations with
changes in task-based functional performance (R2 = 0.25 vs. R2 = 0.15 for conventional clinical observation, both
p < 0.05).

Conclusions: The proposed metrics achieve an elusive goal of sensor-based tremor assessment: improving on
conventional visual observation in terms of sensitivity to change. Further refinement and evaluation of the proposed
techniques is required, but our core findings imply that the main barrier to translational impact for this application can
be overcome. Sensor-based tremor assessments may improve personalised treatment selection and the efficiency of
clinical trials for new treatments by enabling greater standardisation and sensitivity to clinically relevant changes in
symptoms.
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Background
Introduction
Upper-limb tremor can arise as a symptom of various
neurological pathologies including Parkinson’s disease,
essential tremor, and multiple sclerosis (MS). Clinical
assessments seek to determine the nature and severity of
the tremor, in order to inform treatment selection. Due
to technological developments, sensor-based assessments
are increasingly being considered to improve precision,
accuracy, and objectivity, quantifying tremor according to
the frequency and amplitude of movement in the hand or
individual joints [12–14, 25, 27, 30, 34].
The translational impact of this research has been lim-

ited by the fact that, despite the precision and sensitivity
of available sensors, the recorded data exhibit consider-
able test-retest variability. This limitation was highlighted
recently by a task force of the International Parkinson and
Movement Disorder Society (MDS) [14]:

In most clinical studies, investigators are interested in
changes in tremor amplitude or occurrence that exceed
random variability. . . Currently, there is no evidence
that the minimum detectable change is smaller when
transducers are used.

The task force also noted that “there is considerable test-
retest random variability in tremor amplitude”. One might
perceive this as a fundamental limit on the clinical value of
tremor amplitude measurements, leaving little advantage
to be gained from the use of accurate sensors. However,
in the present paper we demonstrate that a considered
analysis of sensor-based measurements can minimise the
need for blunt approximations, such as a population-wide
test-retest variability or the reduction of tremor move-
ments to a single axis. In particular, we present three key
methodological proposals:

Multiple axes: Tremor should be measured across multiple
joints/degree-of-freedom to increase information
capture.Previous authors have adopted this paradigm,
with limited translational success; we assert that the
following additional proposals are essential to ensure
effective exploitation of the available information.

Personal tremor profiling: Changes in tremor ampli-
tude should be measured in a way that accounts
for the individual’s ‘typical’ tremor, for improved
differentiation between tremor changes and other
confounding influences.

Personalised variability control: From sensor-based
assessments, some estimate of the ‘random’ vari-
ability of the subject’s tremor may readily be
extracted. Such an estimate may be used in place of
a population-wide estimate to infer the significance
of any observed change.

In the present paper, we demonstrate that these pro-
posals substantially improve the power of sensor-based
tremormeasurements to detect clinically relevant changes
in symptoms, outperforming directly interpreted sensor-
based measurements and the most widely used clinical
tremor rating scale for MS. Here we take ‘clinically rel-
evant changes in symptoms’ to mean those that yield
measurable changes in functional ability or the perceived
impact of the tremor.
Our method is demonstrated in a cohort of people with

upper-limb tremor due to MS performing a standardised
finger-to-nose task, the most commonly used task in the
assessment of this MS symptom [20]. Currently, there are
no universally effective treatments for MS tremor [20].
Estimates of the prevalence of tremor in MS vary from
approximately 25 to 60 percent [20]. The prevalence of
tremor in the registry of the North American Research
Committee onMS (NARCOMS) is estimated to be at least
45 percent [28].
The assessment of tremor in MS is particularly chal-

lenging as it is often concomitant with ataxia or other
less well-defined movement disorders, and the relative
contribution of each to the observed movement may not
be easily distinguished [20]. Intention tremor, defined as
arising in target-directed movements [5], is a particularly
disabling form that is especially prevalent inMS compared
with other aetiologies. Due to these factors, the ‘tremors’
observed in MS are often less consistently periodic than
those seen in other pathologies, although they still sat-
isfy the Movement Disorder Society’s broad definition of
tremor as “rhythmical, involuntary, oscillatory movement
of a body part” [5]. The complexity and inconsistency of
MS tremor amplitude exacerbates the test-retest variabil-
ity noted by the MDS task force [14], thus degrading the
statistical power of trials for new treatments. However,
in our experience, the essential characteristics of tremor
remain relatively static in each patient from one assess-
ment to another, in that recognisable traits, such as the
relative involvement of individual joints, persist across
multiple observations.

Prior work
The general task of objectively detecting changes in
tremor symptomsmay be considered as a sequence of four
stages:

1 recording the movement with any suitable sensor type
2 extracting movement parameters such as joint angles

or limb segment positions and orientations from raw
data

3 extracting tremor features such as amplitude and
frequency from the movement parameters

4 comparing tremor features between two or more
recordings from the same subject
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The main contribution of this paper is in the fourth
stage of this process, a stage which has not been consid-
ered in detail in prior work.
A thorough discussion of suitable motion capture

technologies is beyond the scope of this paper. They
include optical tracking systems, markerless machine-
vision based systems, on-body sensors, and any com-
bination of the above. As an alternative to capturing
the movement itself, electromyography recordings may
be used to directly capture the underlying muscle
activity [16].
In this paper, we use the term inertial measurement unit

(IMU) to refer to any combination of triaxial accelerom-
eters, gyroscopes, magnetometers and/or GPS sensors
in a single wearable package. IMUs are widely used in
recent tremor studies due to their combination of low-
cost, high accuracy, and ease of use. Some IMU systems
are now marketed specifically for tremor analysis, such as
the Kinesia system [12] and others as reviewed by Ossig
et al. [22]. IMUs, combined with sensor fusion algorithms,
allow any rigid body part’s position and orientation to
be captured in three dimensions. Furthermore, applying
IMUs to multiple adjacent body parts allows the extrac-
tion of the movements of individual joints between those
body parts. This approach can be a convenient means of
capturing motion across entire limbs, or even the whole
body, according to a simplified skeletal model.
Numerous studies have explored the use of this tech-

nology to investigate tremor and other movement dis-
orders or to control intelligent orthotic/assistive devices
[1, 2, 10, 21, 25, 30], and several studies have focussed
on the development and assessment of signal process-
ing techniques to reliably quantify tremor based on these
recordings [11, 18, 24, 29].
The validity of sensor-based tremor measurements as

a means of controlling therapeutic devices or quantifying
tremor characteristics – stages 1–3 in the process out-
lined at the start of this section – is now well established.
It has also been shown that sensor-based tremor assess-
ments may be compared with a database of annotated
recordings to usefully classify tremor type and severity
in Parkinson’s disease and essential tremor [1, 4, 27, 31].
However, the works noted above do not address a crucial
clinical need: the need to identify changes in symptoms
within individuals in order to monitor disease progression
and evaluate treatment efficacy. For these applications, the
usefulness of detailed and accurate measurements is lim-
ited if the test-retest variability remains high. Given that
the symptom itself is known to exhibit substantial intrinsic
variability, it is unsurprising that the MDS task force [14]
describe this as a key limitation of sensor-based tremor
assessments. That may be so, but it is not necessarily an
insurmountable one, as we sought to demonstrate in the
present study.

Hypothesis
The persistence of easily identifiable personal tremor
characteristics across highly variable amplitude measure-
ments suggests that a one-size-fits-all comparison of
tremor features may not be appropriate to capture an indi-
vidual’s changing state. Taking their signature features into
account during the comparison may allow meaningful
changes to be distinguished from random variability. To
our knowledge, no prior work has been explicitly focussed
on this fourth stage of the process of identifying changes
in tremor symptoms.
We proposed to overcome the problem described above

by exploiting the convenience offered by modern systems
such as IMUs in capturing multiple movement param-
eters simultaneously. The high dimensionality of such
data opens up the possibility of seeking mathematical
transformations in which clinically significant changes
and incidental ones are largely separated into orthogonal
axes, essentially removing the latter from the former. We
hypothesised that the inherent variability of MS upper-
limb tremor, which inhibits the detection of clinically
significant changes, can be overcome by separating the
characteristic features of the movement from more ‘ran-
dom’ disturbances like large amplitude deviations in the
movement pathway typical of ataxic movement.

Methodological proposal
Our methodological proposal addresses the question of
how a detailed tremor dataset may be processed to char-
acterise tremor cases in a manner that is robust to
clinically irrelevant variation in the symptom. In gen-
eral our approach assumes that multiple measurements
are available from any given subject. Each measurement
comprises tremor amplitude estimates extracted from
multiple movement parameters (e.g. joint rotations). For
comparability, all measurements are assumed to be from
separate executions of the same task. At the core of our
proposal is the collective analysis of a subject’s available
measurements, leading to a personalised data transfor-
mation that exposes clinically distinct elements of the
individual’s change in symptoms.

Characteristic vectors
The transformations considered rely on the identification of a
‘characteristic vector’ thatdescribes the subject’s archetypal
tremor in a particular task. To generate a subject’s char-
acteristic vector we first define, for each measurement, a
measurement vector ai containing one tremor amplitude
estimate (the form of which is discussed in “Extraction of
tremor amplitudes” section) from each of the N available
movement parameters. If no valid estimate is available for
a given parameter, such as when tremor is not reliably
detected in a particular joint, its place may be held by a
null value. The subscript i represents the ith measurement.
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ai = [
ai,1, ai,2, . . . ai,N

]T (1)

For the jth movement parameter considered, the corre-
sponding element ac,j of the subject’s characteristic vector
is then calculated by summing ai,j across Vj, the set of
indices of the measurements (task executions) from this
subject containing valid results for the jth parameter, as
written below.

ac,j =
∑

i∈Vj ai,j
mj

(2)

mj is the number of valid measurements for the jth
parameter. If, for a given parameter, no valid amplitude
estimates are available (i.e. mj = 0), a null value was
recorded for ac,j.
The full characteristic vector, ac, represents a grouping

of representative amplitude estimates from that subject in
multiple joints or other movement parameters, and can
be used to personalise the interpretation of any particular
measurements from that subject. The notion that person-
alised profiling might be useful in tremor assessment has
particularly strong physiological justification in the case
of MS. The precise symptoms experienced by a person
with MS are highly individual, due to the subject-specific
manner in which the eponymous sclerae, or plaques, are
distributed through the central nervous system.

Personalised measures of change
In this section, we formally define our principal metric of
interest, the change in scale of the tremor, along with its
natural counterpart, the change in profile of the tremor.
Once a characteristic vector is established, the dif-

ference between any two measurement vectors can be
expressed in terms of two new parameters: change in scale
and change in profile.

Change in scale
As shown in Fig. 1 for the case with two movement
parameters, a change in scale is measured parallel to the
characteristic vector. The change in scale dS between
measurements A and B may be expressed as follows:

scale change metric: dS (aA,aB,ac) = (aB − aA) · âc
(3)

where âc is the characteristic tremor vector for that limb,
normalised to have unit magnitude. If some element ai,j
from any of aA, aB, or âc contains a null value, the
jth parameter is excluded from all three vectors before
calculating dS.
The design intent of the scale change metric is to give

greater weighting to those joints in which the individual’s
tremor is most consistently pronounced, thereby reducing
‘noisy’ contributions from elsewhere. Various adjustments
may be considered to further pursue this intent, and two
such strategies are considered within this study. The influ-
ence of lesser joints may be eliminated completely by
removing the corresponding elements of aA, aB, and âc.
Alternatively, the relative influence of the most tremulous
joints may be increased by some tuning of the character-
istic vector, such as by squaring each element thereof, as
follows.

ac2 = [
a2c,1, a

2
c,2, . . . a

2
c,N

]T (4)

This tuned characteristic vector may be normalised to
unit magnitude and employed in an alternative definition
of the scale change metric, referred to henceforth as the
scale2 change metric.

scale2 change metric: dS2 (aA,aB,ac) = (aB − aA) · âc2
(5)

Fig. 1 Conceptual illustration of the scale and profile changes in tremor between two measurements (A and B), applied to a hypothetical example
using only two joint rotations as the basis parameters. The characteristic vector is defined by point C, whose coordinates are typical values of tremor
in joints 1 and 2 for this limb (based on other measurements, not shown). Note that the change in scale is measured parallel to the characteristic
vector, and the change in profile is measured perpendicular to it
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Change in profile
Any other change in the tremor vector is captured in
the component perpendicular to the characteristic vector,
and may be interpreted as a deviation from/towards the
established characteristic blend, or profile, of the tremor.
This difference measurement may be calculated as the
magnitude of that perpendicular component, as follows.

profile change metric: dP(aA,aB,ac) = |(aB −aA)× âc|
(6)

Because changes in profilemaymanifest in any direction
perpendicular to the characteristic vector, they cannot be
interpreted as an increase or decrease; they are always
positive by construction. Hence they cannot be used to
detect whether symptoms have worsened or improved,
though they may be useful in identifying when a subject’s
typical tremor characteristics have altered significantly.

Normalisation
Based on the preceding definitions, the movement param-
eters with the greatest amplitude will clearly have the
greatest influence on the direction of ac and, conse-
quently, dS and dP . This weighting may be appropriate if
all parameters are of comparable type (e.g. all are joint
angles). However, if the parameters are heterogeneous
(e.g. if they include displacement and rotation of the
hand, which are measured in different units), such uneven
weighting is not appropriate.
Measurements involving heterogeneous parameters

must be normalised before a meaningful characteristic
vector can be calculated. If a reasonable estimate of each
parameter’s distribution across a given population is avail-
able, then each may be converted to a z-score by subtract-
ing the population mean before dividing by the standard
deviation.

Controlling for intrinsic variability
The MDS task force [14] highlighted the need to distin-
guish meaningful amplitude changes from random vari-
ability. To embody this intent, we scale the metric of
clinical interest (the average difference between visits) by
an estimate of intrinsic variability (the average difference
between measurements taken in the same visit). Thus
the adjusted value of some arbitrary difference metric dX
between the days p and q is calculated as follows

d′
X (p, q,ac) =

〈
dX

(
ap1,aq1,ac

)
, dX

(
ap2,aq2,ac

)〉

〈
dX

(
ap1,ap2,ac

)
, dX

(
aq1,aq2,ac

)〉

(7)

where ap1 and ap2 are the measurement vectors for the
first and second recordings on day p, respectively, and
likewise aq1 and aq2 for day q. Angle brackets denote the
average of the enclosed elements.

Method
We evaluated the proposed metrics using movement data
recorded from the dominant arms of 24 people with
MS tremor, 19 of whom provided recordings from that
arm on a second visit. On each visit, the subject was
also assessed according to the Fahn-Tolosa-Marin Tremor
Rating Scale (FTMTRS) [8], explained in greater detail in
“Metrics from a conventional clinical scale” section. No
interventions were administered for the purposes of the
study, and none of the subjects received a change in treat-
ment of their tremor symptoms between visits. Natural
changes in tremor symptoms were expected due to dis-
ease progression as well as daily factors such as weather
and fatigue.
The characteristics of the cohort on each visit are sum-

marised in Table 1. Student’s paired t-tests revealed no

Table 1 Cohort Summary

FTMTRS - Visit 1 FTMTRS - Visit 2

Patient ID M/F age A B C A B C Days

1 F 57 3 18 24 4 17 24 216

2 F 44 4 20 24

3 M 52 2 5 8 1 5 11 246

4 F 57 2 5 14 2 6 19 194

5 F 34 2 6 20 2 6 19 222

6 M 60 4 20 24 4 20 24 209

7 F 44 3 18 18 2 13 23 192

8 F 45 3 19 20 2 10 24 381

9 F 49 0 0 9 0 0 10 206

10 M 42 1 13 18 1 20 24 155

11 F 48 1 0 5 1 1 5 189

12 F 46 2 12 19 1 9 19 101

13 F 43 1 2 8 1 1 9 267

14 M 33 1 5 13 1 5 14 225

15 F 55 1 3 21

16 F 48 1 2 16 3 12 21 154

17 M 50 0 1 11 1 3 13 138

18 M 31 2 1 16 1 3 14 147

19 F 45 1 1 6 1 3 10 28

20 F 30 1 3 12 1 4 11 21

21 F 31 0 0 3 1 1 4 35

22 F 44 2 19 20 2 13 22 27

23 F 67 2 9 20 2 11 19 16

24 F 34 0 0 1 1 0 6 12

mean 45 1.6 7.6 14.6 1.6 7.4 15.7** 153.7

min 30 0 0 1 0 0 4 12

max 67 4 20 24 4 20 24 381

**Significant change from visit 1; p < 0.01
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significant change in FTMTRS A or B (p = 0.9 and
p = 0.8, respectively), but the increase in FTMTRS C was
significant (p = 0.002).

Recordings
In each visit, the subject performed two instances of a
finger-to-nose task with each arm in accordance with a
set protocol [9], as part of a broader study of tremor in
MS. Only recordings from the dominant arm were used
in this analysis, under the assumption that tremor in the
non-dominant arm would not straightforwardly indicate
functional disability. Each instance included three repe-
titions of the arm flexion-extension cycle, all of which
were performed during verbal instruction and simulta-
neous demonstration by an experienced physiotherapist.
The subjects were guided to move slowly, to prevent
confusion caused by voluntary movements performed at
tremor frequencies. The end-point of the movements
(finger at nose) was sustained for a minimum of three
seconds to allow a representative characterisation of the
tremor. This movement stage was the focus of analyses

in our study, because target-based movement is expected
to evoke intention tremor, a particularly disabling form of
tremor that is especially prevalent in MS.
The subjects’ movements were recorded using a video

camera and five IMUs (Xbus Kit and MTw Kit, Xsens
Technologies B.V., Enschede, The Netherlands), as shown
in Fig. 2.
At the start of each recording, the subject adopted a

calibration pose for six seconds, avoiding sudden move-
ments. This period allowed for settling of the manufac-
turer’s proprietary XKF-3 sensor fusion algorithm, based
on the extended Kalman filter, which combined tri-axial
accelerometer, gyroscope, and magnetometer readings to
estimate the orientation of each IMU. A physiotherapist
assisted them to hold the five body parts either parallel or
at right angles to one another. At the end of this calibra-
tion period, the difference between the IMU orientation
estimates and the idealised pose of the associated body
segments were taken as fixed estimates of the IMUs’ rel-
ative alignments. Each IMU recording was synchronised
with a video recording to aid interpretation of the data.

Fig. 2 Photograph showing the positions of the five IMUs attached with double-sided adhesive
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Movement parameters
The IMU data were captured and analysed using our
custom Tremtrace software, developed in MATLAB�.
The movement stage of interest (fingertip within approx-
imately 10 cm of the nose, neglecting involuntary excur-
sions) was extracted manually. The analyst’s judgement
was used to exclude any periods in which the subject devi-
ated from the task in some way, such as by anchoring their
fingertip on the nose rather than holding it floating in
front of the nose as instructed.
From each instance of three repetitions, we sought

to extract representative tremor amplitude estimates for
each of fifteen joints, described previously in [17] and
listed in Fig. 7.
The base of the subject’s torso was assumed to be fixed

throughout each recording. Note that complex move-
ments of the torso and shoulder girdle movement were
simplified to three rotational joints each. Two joints,
namely the elbow carrying angle and wrist pronation
(distinguished from forearm pronation in being man-
ifested more distally, between the hand and forearm
IMUs), were not expected to exhibit substantial move-
ment because they are not true anatomical joints. They
were included for completeness of the kinematic recon-
struction and to expose gross errors in sensor alignment.
In addition to rotations of the joints described above,

we assessed translational and rotational movements of the
hand, acknowledging the functional importance of this
particular body segment’s motion as the cumulative result
of the joint rotations. Hand displacements at tremor fre-
quencies were calculated based on acceleration data from
the hand IMU only. The accumulation of low-frequency
drift due to integration of acceleration data was not prob-
lematic as frequencies below 2 Hz are not included in our
analysis
Hand displacement and rotation were each consid-

ered only in the dominant tremor axis. The dominant
translational and rotational tremor axes were identified
separately for each movement stage by applying prin-
cipal component analysis to the three-dimensional data
(position or angular velocity in a global reference frame)
after band-pass filtering at 2–10 Hz.
In summary, a total of seventeen movement parameters

were considered: fifteen joint rotations, plus hand rotation
and displacement in the dominant axes.

Extraction of tremor amplitudes
For each window of interest in the recordings, we quanti-
fied tremor amplitudes from the original signals using the
average tremor amplitude (ATA) [35].

ATA = 4LTS

f2∑

f=f1

√
X(f ) (8)

L is the number of frequency bins in this tremor band-
width, and TS is the sampling period. X(f ) is the unfil-
tered signal’s power spectral density, calculated byWelch’s
method. The nominal tremor frequency fT was identified
by the maximum of X(f ) within the 2–10 Hz bandwidth.
To allow for a broad peak in X(f ), the tremor band-
width was identified by the boundary frequencies f1 =
max(2 Hz, fT − 1 Hz) and f2 = min(10 Hz, fT + 1 Hz).
The factor 4 is used so that, when the signal is a perfect
sinusoid, ATA returns the peak-to-peak (rather than zero-
to-peak) amplitude of that sinusoid, for a more intuitive
representation of visual perceived amplitude.
Additional stages were included in our processing chain

to emulate the common clinical practice of basing a
tremor score on several repetitions of the task to improve
the reliability of the score. Firstly, unreliable estimates
were rejected using the heuristic conditions described
in Appendix 1. Subsequently, for each of the seven-
teen movement parameters, the surviving estimates of
log(ATA) were averaged to form a representative estimate
for that parameter in that instance of the task.
For all subsequent analyses, the measurement vectors

were formed of some subset of these estimates.

Measurement vectors and characteristic vectors
The subsets of movement parameters were chosen to
focus on movement in either the hand or a selection of
individual joints, as described in the following subsections.

Handmovement
Hand displacement and rotation in their respective dom-
inant axes are two parameters that can be further com-
bined into a more general description of hand movement.
Clinical experience indicates that each individual’s tremor
has its own characteristic blend of displacement and rota-
tion produced at the hand. We quantified this blend by
calculating a characteristic vector, using j = 1 for hand
displacement and j = 2 for hand rotation, after nor-
malisation as described in “Normalisation” section. The
characteristic blend of hand displacement and rotation in
a given limb was then taken as the two-element ‘character-
istic vector’ calculated from Eq. 2 using these normalised
values of ai,j.

Jointmovement
Intuitively, the hand is a suitable point of measurement
for capturing the functional impact of tremor. However,
handmovement is an abstraction of individual jointmove-
ments, and important clinical information may be lost
in that abstraction. The basic approach described above
can be applied to any grouping of two or more individ-
ual joints to achieve an alternative tremor metric that
may be more closely linked to the aetiology and anatom-
ical distribution of the tremor, and thus more sensitive
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to disease modification/progression. In this case, z-score
normalisation was not applied because the parameters
were not heterogeneous, and such scaling would artifi-
cially inflate the significance of joints that do not tend to
exhibit substantial tremor.
This approach can be applied across all recorded joints.

However, it is conceivable that the inclusion of joints
that do not consistently exhibit substantial tremor may
introduce error to the measurement without incorporat-
ing useful information. A subset of joints can be selected,
based on the ranking of their characteristic tremor ampli-
tudes in that limb, but it is uncertain what number of
joints would be optimal to include. This is one of the
parameters explored in this study. All calculations of
tremor in joint movement were repeated while varying N,
the number of joints included in the calculation. In each
case, only theN joints with the greatest values in the char-
acteristic vector were included. Joints for which no value
was returned due to exclusion of unreliable tremor esti-
mates (see Appendix 1) were placed at the bottom of this
ranking.
For each class of measurement vector, each subject’s

characteristic vector was calculated according to Eq. 2
based on all available recordings from that subject. Hence
each characteristic vector was based on a maximum of
four separate measurement vectors: two instances per
visit, across two visits.
Changes in scale and profile were then calculated

according to Eqs. 3 and 6, respectively.

Alternative metrics for comparison
The primary aim of our analysis is to determine whether
the proposed metrics, particularly change in scale, offers
an improvement over conventional metrics in detecting
clinically relevant changes in symptoms. Hence we must
define these competing metrics as well as reference met-
rics against which to assess their efficacy.

Alternative sensor-Basedmetrics
The most obvious sensor-based metric for a change in
tremor symptoms is the simple difference in a univari-
ate tremor amplitude estimate. Our analysis includes hand
displacement, hand rotation, and rotation in the joint
with the greatest tremor amplitude as examples of such
univariate metrics.
For multivariate tremor measurements, such as those

described in “Measurement vectors and characteristic
vectors” section, the mean difference may be taken as a
simple difference metric. We define the mean difference,
dM, as the mean, over all movement parameters consid-
ered, of the difference between two measurement vectors.

dM (aA,aB) =
∑

j∈WA,B

(
aB,j − aA,j

)

nA,B
(9)

WA,B is the set of nA,B movement parameter indices
(j-values) for which aA,j and aB,j are both non-null.

Metrics from a conventional clinical scale
As noted by the MDS task force [14], sensor-based met-
rics have not yet been shown to offer any practical benefit
over conventional scales in detecting clinically relevant
changes. Hence we included metrics from a conventional
clinical scale in our comparisons.
The FTMTRS [8] is the most widely used clinical scale

for the assessment of tremor in MS [20]. It consists of
three parts, each containing multiple components scored
on an integer scale from 0 (least severe) to 4 (most severe).
In Part A, the examiner rates the severity of the subject’s

resting, postural, and action/intention tremor in various
body parts. In this study, we have focussed strictly on
the dominant-limb intention tremor component of Part
A, because this tremor category is considered to be par-
ticularly prevalent and debilitating in MS. This score is
henceforth denoted ‘FTMTRS A’. Like the sensor-based
measurements, it was based on the subject’s performance
of a finger-to-nose test. Scoring was performed by a
single, trained, experienced observer (an MS-specialist
physiotherapist). Previous studies have shown FTMTRS
A to have good intrarater repeatability (Spearman’s ρ ≥
0.92 [15, 32]) and moderate/good interrater repeatability
(Spearman’s ρ ≥ 0.73 [15, 32], Cohen’s κ ≥ 0.54 [9, 32]).
The rater in our study participated as a rater in [9]. Thus
the inter-rater reliability of her scoring has been validated.
In Part B, the subject’s functional disability is rated in

a standardised manner according to their performance in
handwriting, three drawing tasks, and a water pouring
task. In this study, ‘FTMTRS B’ was taken as the sum of the
scores achieved with the dominant hand in these tasks.
Part C of the FTMTRS is the subject’s self-assessment

of their tremor’s functional impact on several activities of
daily living: speaking, feeding, drinking, hygiene, dressing,
writing, and working. We denote the sum of these scores,
excluding speaking, as ‘FTMTRS C’.
Note that controlling for intrinsic variability in the man-

ner described in “Controlling for intrinsic variability”
section is not pragmatic for metrics based on the
FTMTRS; same-day differences are expected to be zero
due to the coarseness of these scales, and the result of Eq. 7
would thus be undefined.

Referencemetrics
Previous studies [6, 14, 23] have compared tremor met-
rics on the basis of minimum detectable change (MDC).
We chose instead to examine and compare the efficacy of
various tremor amplitude metrics in tracking changes in
reference metrics representing functional disability. MDC
cannot straightforwardly be applied to metrics of change
that are measured in an entirely different direction from
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the absolute metric. Furthermore, the validity of MDC is
dependent on assumptions about the statistical distribu-
tion of the metric. In contrast, our use of Spearman rank
correlations does not rely on assumptions about the data
distribution, ensuring a fair comparison between very
different metrics. Having acknowledged the multidimen-
sional nature of tremor, evaluating the metrics based on
correlations with measures of functional disability ensures
that we identify metrics with clinical relevance, rather
than favouring a metric that is repeatable but insensitive
to the most important aspects of the tremor.
The tremor amplitude metrics considered comprise

all aforementioned sensor-based metrics along with
FTMTRS A. Our primary measurement of functional dis-
ability is FTMTRS C, because it captures a subject’s symp-
toms and their impact beyond the limit of what may be
exposed during the clinical visit. The subjective nature of
this score is a notable limitation when comparing individ-
uals, although it is unlikely that the subject-specific biases
would correlate systematically with errors in the sensor-
based tremor amplitude measurements. In other words,
while the subjective assessment of the tremor’s impact
may be a ‘noisy’ measure of the tremor’s ‘true’ impact,
when measuring intra-individual changes a sensor-based
metric that exhibits statistically significant correlation in
spite of this noise can reasonably be interpreted as captur-
ing meaningful changes in the impact of tremor.
Nonetheless, to avoid solely depending on a subjective

reference metric we include FTMTRS B in our analyses
as a more objective, albeit less comprehensive, measure of
functional disability.

Quantifying the amplitude of a single multivariate tremor
measurement
Although our primary focus is on the efficacy of different
metrics in detecting changes in symptoms, our under-
standing of these metrics may be improved by examining
the direct relationships between single measurements
of different types. To enable the comparison of multi-
dimensional tremor measurements with individual
FTMTRS C scores, we must extract a single value rep-
resenting the tremor severity in that multi-dimensional
measurement. For this purpose, we quantified the tremor
severity in any measurement vector using the mean of its
non-null components, ai.

ai =
∑

j∈Wi ai,j
ni

(10)

Wi is the set of movement parameter indices (j-values)
for which ai,j is non-null in the ith measurement. ni is the
number of elements inWi.

Statistical analyses
The relationships between tremor amplitude metrics and
reference metrics were examined based on Spearman’s
rank correlation coefficient to avoid excessive influence
from outliers and avoid assumptions about the distribu-
tion of the data. Statistical significance of these correla-
tions was determined based on p-values calculated using
MATLAB�’s corr function, using a threshold of p < 0.05.
For joint movement metrics, multiple variants were

considered for 1 < N ≤ 15 (i.e. multiple compar-
isons were made), presenting a risk of Type I statistical
errors. To address this concern, we applied the Benjamini-
Hochberg (BH) procedure [3] to this family of results to
control the false discovery rate (FDR). The estimated false
discovery rate for each correlation, pFDR, was used as a
conservative replacement for the p-value and set against
the same threshold. Note that the BH procedure is conser-
vative when the candidate metrics can be assumed to be
positively correlated with each other, as is the case here.

Results
Spearman rank correlations
Figure 3 depicts the correlations between tremor ampli-
tude metrics and subjects’ self-assessment of the impact
of their tremor on activities of daily living (FTMTRS C).
For each correlation, at least 15 data points were available
(15 or more subjects with valid measurements on two dif-
ferent days, and two valid same-day measurements for at
least one of those days). As shown in the left panel, clinical
observation (FTMTRS A) exhibited substantially stronger
correlation than all sensor-based metrics, although every
amplitude metric proved to be a significant correlate.
This indicates that FTMTRS A more accurately cap-
tures an individual’s tremor severity relative to the broader
population.
However, as depicted in the right panel of Fig. 3,

FTMTRS A and all sensor-based metrics restricted to
the hand exhibited no significant correlation with the
subjects’ change in self-assessed tremor impact between
visits. In contrast, several variants of the joint movement
metrics exhibited statistically significant correlations with
this change. The scale2 metric (5) exhibits statistical sig-
nificance for all N values (except the trivial case of N = 1,
at which scale changes are effectively identical to the
mean change). The strongest correlation is exhibited by
the mean change for the case in which only the four most
tremulous joints are considered (N = 4). However, the
plots for mean change and scale change peak erratically
in the range 1 < N < 7, beyond which they exhibit no
substantial correlation (R2 < 0.1). These results suggest
a particular strength of the scale2 metric; by exaggerating
the influence of themost tremulous joints on a continuous
scale, it reduces the dependence of the number of joints
included.
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Fig. 3 Left panel: Squared Spearman’s rank correlation coefficients comparing tremor amplitude metrics against FTMTRS C (self-assessed impact of
tremor). The parameter N applies only to joint movement, hence all other metrics are represented by horizontal lines. All correlations in this panel
are statistically significant. The legend applies to both panels, although the ’change in scale’ metrics (see Eqs. 3 and 5) feature only in the right panel.
Right panel: As in the left panel, but comparing the tremor amplitude changemetrics, controlling for intrinsic variability (see Eq. 7) against the
change in FTMTRS C. ∗ denotes statistical significance at pFDR < 0.05. † denotes that the result does not survive false discovery rate control, i.e.
p < 0.05 and pFDR ≥ 0.05

Figure 4 presents equivalent correlations against our
second reference metric, task-based assessment of func-
tional disability (FTMTRS B). Again all tremor amplitude
metrics exhibit statistically significant absolute correla-
tion, and FTMTRS A is more strongly correlated than the
sensor-based metrics, albeit by a reduced margin in this
case (left panel). As seen in the right panel, the scale2
metric achieves statistical significance at large values of N

(N = 6 and N > 7). FTMTRS A also exhibits statistical
significance in this case, albeit with a lesser R2 value. None
of the sensor-based change metrics restricted to the hand
exhibit statistically significant correlations.
The mean and scale change in joint movement present

the strongest correlations with change in FTMTRS B, in
the range 2 < N < 6. These results are not regarded as
statistically significant; they do not survive false discovery
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Fig. 4 Similar to Fig. 3, but comparing tremor amplitude metrics against FTMTRS B (task-based assessment of functional disability). Again, all
correlations represented in the left panel are statistically significant. In the right panel, †† denotes that p < 0.01 but pFDR ≥ 0.05 (result rejected by
false discovery rate control)
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rate control, largely due to the weakness of correlations
beyond N = 6. Nonetheless, the pattern of these plots
combined with the results for scale2, here and in Fig. 3,
suggests that these metrics may have a genuine sensitiv-
ity to change in functional disability over a limited range
of N values. Fresh data would be required to test this sug-
gestion rigorously and explore the possibility that, with
more informed parameter selection, the scale metric may
be superior to the scale2 metric. From the available data,
the evidence that scale2 has merit is far more compelling.

Individual level data
In this section, we present more detailed results from the
FTMTRS metrics. It is not feasible to present detailed
results from all the variants of sensor-based metrics, but
we present those for scale2 (with N = 15), which was
arguably the most promising new metric. As noted in
the previous section, the available data allowed scale2
to be calculated for fifteen subjects; two did not return,
three did not record from their dominant arm on the sec-
ond visit, and in a further four tremor was not reliably
detected on at least one of the days. The characteristics
of this sub-cohort are summarised in Table 2. Similar to
the full cohort, paired t-tests revealed significant change
in FTMTRS C (p = 0.010), but not FTMTRS A and
FTMTRS B (p = 0.38 and p = 0.13, respectively).
Additionally, scale2 exhibited a marginally significant
increase (p = 0.054).
Figure 5 shows the change in tremor versus time for

scale2 at N = 15 and for the three FTMTRS metrics.
None of the metrics exhibited a significant correlation
with the number of days between visits. This reflects the
highly variable nature of disease progression in MS.
Figure 6 compares the changes in tremor metrics for

individual subjects. While some extreme data points can
be seen, the use of Spearman’s rank correlation as the basis
for comparison ensured that these did not exert undue
influence.

Dominant joints
Given that the discriminatory power of the joint move-
ment metrics was found to be sensitive to the number
of joints included, it is important to consider whether

Table 2 Summary for Sub-Cohort from which Scale2 was
Calculated

FTMTRS - Visit 1 FTMTRS - Visit 2

age A B C A B C Days

mean 47 1.6 6.6 14.6 1.5 7.6 16.4* 153.1

min 30 0 1 6 0 0 9 17

max 67 4 20 24 4 20 24 267

*Significant change from visit 1; p < 0.05

any joints were preferentially included or excluded in
these calculations. Figure 7 presents histograms of each
joint’s rank within the characteristic vector of each of the
46 limbs recorded. We see that, shoulder rotation, fore-
arm pronation/supination, and wrist flexion/extension are
each among the three joints of greatest tremor amplitude
in the vast majority of limbs. The most proximal joints in
our model, those of the shoulder girdle and trunk, pre-
sented the six lowest tremor amplitudes (ranks 10–15) in
almost every limb.
It is important to note that these distributions of joint

involvement are likely to be specific to the task and pathol-
ogy (MS) considered in this study. Furthermore, the rank-
ing of joints according to the amplitude of rotation should
not be interpreted as a reliable ranking of their functional
impacts.

Discussion
The results presented confirm that the power of sensor-
based metrics to discern clinically relevant changes in MS
tremor symptoms can be improved by using personalised
tremor profiling. This improvement yields statistically
significant correlates of changes in functional disability
and self-assessed impact of tremor on daily living, out-
performing conventional clinical observations in these
regards. Thus the newly proposed metrics overcome the
perceived limitations of sensor-based tremor assessments
identified by the MDS taskforce [14].

Comparison with conventional practice
These results demonstrate the potential importance of
sensor-based tremor measurements as a complement to
subjective and task-based scales in monitoring changes in
an individual’s symptoms, e.g. during clinical trials, per-
sonalised assessments of treatment efficacy, or routine
clinical visits. Several variants of the newly proposed met-
rics outperformed FTMTRS A as a correlate of change in
functional disability or tremor impact.
Conversely, FTMTRS A outperformed all sensor-based

metrics in terms of direct correlations with the reference
metrics. A likely contributing factor is the fact that the
sensor configuration used in this study does not capture
all aspects of limb movement. Most notably, movement of
the fingers was not captured, although such an extension
of our method is technically feasible with optical motion
tracking systems or with recently developed commercial
IMU systems such as Noitom Perception Neuron�. In
applying the FTMTRS A score, the clinician is able to
account for all visible aspects of limb movement. Fur-
thermore, the scale does not specify exactly which part
of the hand should be observed. This allows the clinician
to adapt their point-of-interest, consciously or uncon-
sciously, to account for the likely functional impact of
the observed symptoms. The clinician may also take into
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account other sources of information, such as vocal cues,
facial expression, or awareness of the patient’s movement
characteristics outside the period of interest, to distin-
guish between voluntary and involuntary movement and
to discount events that are not representative of the sub-
ject’s symptoms. Although our sensor-based approach
allows the analyst to implement such decision-making
when extracting the movement stages of interest, this
influence is inevitably constrained by the limitations of the
software interface.
The overall richness of information and clinical judge-

ment contributing to the FTMTRS A score explains the
primacy of this metric as a single-measurement indica-
tor of functional disability. However, while this rich input
informs the FTMTRS A score, it is not captured for future
reference, hence these benefits are lost when comparing
two measurements. Furthermore, the coarse resolution
of the FTMTRS A, a necessity for intra- and inter-rater
consistency, limits the scale’s sensitivity to change. The
dependence of sensitivity on resolution is demonstrated
more explicitly in Appendix 2, using simple numerical
experiments. The extreme weakness of the correlation

between changes in FTMTRS A and FTMTRS C may be
surprising, given the relatively strong absolute correlation.
However, our result here is in agreement with van der
Stouwe et al. [33], who found that changes in FTMTRS C
were significantly correlated with changes in FTMTRS B,
but not FTMTRS A. In summary, the precision, objectiv-
ity, and rich data storage afforded by sensor-based metrics
are advantageous in identifying changes in symptoms, as
our study demonstrates.
It might be argued that a fairer comparison of observa-

tional and sensor-based metrics would be one in which
the clinician identifies a change in symptoms by directly
comparing video recordings between sessions. However,
in clinical practice this approach would consume con-
siderably more of the clinician’s time. Furthermore, no
validated scales exist to guide the scoring of such compar-
isons, and we cannot envisage a straightforward manner
in which such a scale would standardise the incorpora-
tion of more than two recording sessions. In contrast,
the extraction of sensor-based metrics comparing any
number of available recordings requires no appreciable
increase in effort from the clinician.
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Physiological interpretation
The newly proposed metrics defy the notion that tremor
in MS is too variable to justify attempting to measure
it with greater precision than that afforded by conven-
tional scales [14]. It appears that the calculation of the
characteristic vector allows us to ascribe some regular-
ity to the tremor, even when its amplitude is not regular.
Effectively, deviations from this profile are then identified
and discarded, removing a source of variance from the
measurement.
Although our approach has been shown to reveal clin-

ically relevant changes, it would be rash to assume the
discarded components are clinically irrelevant. MS is a
progressive condition starting in most individuals with a
relapsing remitting phase but transforming over time to a
secondary progressive phase with few or no relapses. This
later phase is characterised by increasing disability mostly
without evidence of new plaque formation. Most patients
seen in this study were in the secondary progressive phase
and sudden acute changes would not be expected. Where
relapses do occur, tremor changes are perhaps more likely
to manifest as a change in profile rather than scale, due
to the formation of new plaques. A future area of inter-
est would be to confirmwhether progressive and relapsing
remitting symptom changes tend to manifest separately in
scale and profile changes, respectively.

Refinements and variations of our approach
Our study tested several different implementations of the
principle of personalised tremor profiling, and there are
several other ways in which the implementation of our
method could vary.
We have demonstrated that personalised tremor profil-

ing allows perceptible change in the tremor’s functional
impact (FTMTRS C) to be identified. Although the mean
change in joint movement (without profiling) achieved
stronger correlations than the scale metrics in isolated
cases, it showed strong sensitivity to the number of joints
included, N, leaving no clear optimal choice for this
parameter. The proposed use of a characteristic vector
appears to reduce this sensitivity to N, especially in the
case of the scale2 metric, which allows a conservatively
high value of N to be chosen without loss of efficacy. It is
likely that none of the considered variants of scale change
represents the optimal use of tremor profiling. In partic-
ular, there are many conceivable variants of tuning the
characteristic vector or the scale change calculation (i.e.
alternatives to Eqs. 4 and 5), which have yet to be explored.
Nonetheless, our study provides proof-of-concept that
such an approach can yield a metric that is superior to
coarse-scaled visual observation in indentifying clinically
relevant changes in symptoms.
The distinction between hand and joint movement war-

rants attention, not least for reasons of practicality. Hand

movement may be recorded with a single sensor unit, or
even with standard smartphones or smartwatches [19],
making it particularly well suited to frequent at-home
monitoring. This convenience could conceivably allow
closer clinical monitoring without substantially increasing
the burden on the patient, and our approach could easily
be incorporated into those systems. Our results indicate
that, in terms of absolute correlations, the combined hand
movement metrics yield a slight improvement on the use
of displacement or rotation alone. Notably, however, our
newly proposed hand movement metrics were not found
to improve on simple hand displacement/rotation mea-
surements in terms of sensitivity to changes in symptoms
in these single sensor configurations.
For all joint movement metrics, no substantial improve-

ment in performance was achieved beyond N = 6.
Considering the joint rankings presented in Fig. 7, this
suggests that movements within the torso (trunk and
shoulder girdle) do not offer useful new information on
functional disability or the impact of tremor. One may
therefore be tempted to seek reduced sensor configura-
tions for convenience. However, shoulder rotation pre-
sented as one of the three most tremulous joints in the
vast majority of cases. Hence we advise that some sensing
of the torso is necessary, even if it is only compared with
the upper arm in order to identify shoulder movement.
Individual finger movements are also expected to yield

relevant information, especially when manual dexterity is
impaired. Finger movements were not captured in our
study, but our analytic method is suited to such variations.
Our study focussed on recordings captured during a

very specific task, in which the subject attempts to hold
their finger just in front of their nose. This task was
chosen because it is commonly used in clinical tremor
assessments and is expected to evoke intention tremor,
which is believed to be particularly disabling. Further
study is required to examine the extent to which multi-
joint tremor profiling may be usefully applied to other
tasks and tremor types. Although these other embodi-
ments of the proposed metrics would not be expected to
correlate as strongly with disability changes, they may still
be useful biomarkers of disease progression.
Alternative implementations of our method may also

make use of different movement parameters from those
considered here. For example, joint torques estimated by
inverse dynamics [17] or individual joint contributions to
hand velocity/acceleration [26] may be more functionally
relevant than joint rotations. Furthermore, the character-
istic vector may incorporate the frequency and/or relative
phase of the oscillations in individual movement parame-
ters, rather than just the amplitude. We intend to explore
such variants of our approach in future work.
A notable limitation of our sensor-based approach is

that it does not robustly distinguish ‘true’ tremor from
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ataxic movements. The same may be true of FTMTRS B
and FTMTRS C. Therefore, hypothetically, a strong com-
mon contribution of ataxia might exaggerate the effi-
cacy of the proposed metrics as indicators of tremor.
Visual observation (i.e. FTMTRS A) may well be supe-
rior in this regard, drawing on the skill and experience
of the observer, but it is a challenging task in any case.
The strong absolute correlation between FTMTRS A and
FTMTRS B/C suggests that ataxic contributions do not
dominate. Future work may be directed at developing
algorithms that objectively discriminate between tremor
and more general ataxia. Such an algorithm could con-
ceivably be appended to the beginning of our processing
chain to eliminate the influence of ataxia on the tremor
measurements. The importance of this step would depend
on the nature of the treatment under consideration and
whether it selectively targets either tremor or ataxia.
The data processing techniques used in later stages of

our method also present scope for variation. In particular,
there may be many other valid ways in which to calculate
the characteristic vector that serves as our personalised
tremor profile. Our method discards phase information,
but the relative phase of tremor in different movement
parameters may be an important aspect of an individ-
ual’s tremor profile, as may the frequency of the tremor.
However, such features are likely to have a complex, non-
monotonic relationship with the tremor’s perceived or
functional impact, making our simple subtractive defini-
tions of change in scale (Eq. 3) inappropriate. Machine
learning techniques such as neural networks may be bet-
ter suited to accommodating such complexities. We have
avoided such techniques in this study because the known
inter-individual heterogeneity of MS tremor symptoms
would present substantial risk of over-fitting, especially in
a relatively small cohort such as ours. However, our study
provides proof-of-principle that the inherent variability of
MS tremor symptoms can be overcome with appropriate
data analysis to achieve sensor-based metrics that cap-
ture changes in functional disability (self-perceived and
objectively measured) more accurately than subjective
observation.

Conclusions
Personalised multi-joint tremor profiling allows clinically
relevant changes in symptoms to be exposed in objective,
precise, detailed movement recordings. The newly pro-
posed metric based on a squared characteristic vector
was observed to show statistically sound correlation with
changes in the functional impact of tremor, whether based
on self-assessment (FTMTRS C) or task performance
(FTMTRS B). Contrary to previous studies, we have
shown that sensor-based measurements can improve on
conventional clinical observation (FTMTRS A) in terms
of sensitivity for this task.

There are multiple ways in which this improvement can
be expected to benefit people with tremor. Personalised
treatment selection may be improved by more accurately
characterising the effects of a newly prescribed treatment,
especially in MS where movement disorders are complex
and subject to change. More broadly, convenient in-home
monitoring could allow data on symptom developments
to be captured in detail for fast, well-informed clinical
intervention. Finally, the development of new treatments
may be accelerated by allowing clinical trials to acheive
adequate statistical power in shorter or smaller studies,
thus reducing practical or financial cost as deterrents to
research.
Future investigations will explore how the method may

be refined and extended to other movement tasks and
tremor categories.

Appendix 1: conditions for rejecting tremor
amplitude estimates
To prevent the analyses from being distorted by unre-
liable amplitude estimates, ambiguous scenarios were
automatically identified and excluded according to the
rules described below. These rules were developed and
tuned heuristically according to the authors’ experience
and judgement in comparing tremor estimates to video
recordings to ascertain confidence in the estimate.
Firstly, the amplitude estimate was rejected if the sig-

nal section isolated by the user was shorter than 1.5 s,
which would correspond to three full cycles at 2 Hz, the
lowest possible tremor frequency considered. Although
the 1.5-s threshold defies the conventional guidance that
the window length for Fourier analysis should contain at
least 10 full cycles at the lowest frequency of interest to
allow accurate characterisation, this relaxation of the rule
was deemed acceptable for the following reasons: 1) the
extreme case of 2 Hz tremor would not occur frequently; 2)
fine frequency resolution was not required; 3) inaccu-
racies in amplitude estimates would be attenuated by
averaging across three repetitions of the task; and 4) ambi-
guities attributable to the use of a short analysis window
would be excluded by further criteria, described in the
next paragraphs. In current practice, clinical assessments
of complex tremor cases are often made on the basis of
multiple short bursts of a few tremor cycles, particularly
when the tremor is highly intermittent. Our approach
reflects this practice.
Theminima within 1.5 Hz either side of the peak inX(f )

were taken as conservatively wide bounds of the tremor
band. The array of frequency bins included in the tremor
band is denoted fTB. The remainder of the 2–10 Hz band,
denoted fCB, was used as a basis for comparison. To avoid
ambiguities between tremor and broadband noise, which
might arise from sensor noise or from non-periodicmove-
ment, the amplitude estimate was rejected if the average
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power in the tremor band was less than the median (50th
percentile) of power in the comparison band, which can
be written as follows

X(fTB) < P50(X(fCB)) (11)

The bar notation on the left hand side of this inequal-
ity denotes the mean of that series. If inequality 11 was
satisfied, further criteria were examined to avoid ambigu-
ous cases in which the suspected tremor peak was actu-
ally one of many similarly large peaks in the spectrum,
which might be caused by complex movements, spec-
tral leakage, or harmonics of the short Fourier window.
Non-rectangular windowing functions are conventionally
used to reduce the occurrence of such ambiguities, but
this approach was considered unattractive in our applica-
tion due to the extremely short signal lengths considered.
Instead of prevention, we chose a strategy of exclusion.
The array of differences between consecutive local
extrema of X(fCB), denoted �CB, was compared against
the range of X(fTB), �TB.

�TB = max(X(fTB)) − min(X(fTB)) (12)

The amplitude estimate was rejected if the power range
of fTB was small compared to the fluctuations in fCB or,

more specifically, if either of the following conditions were
satisfied.

�TB < 2P70(�CB) (13)

�TB < �CB + 3σ(�CB) (14)
where σ(�CB) denotes the standard deviation of �CB.

Appendix 2: the effect of scale discretisation on
correlation
Previous authors have noted that the coarse resolution
of five-point tremor scales such as FTMTRS A makes
them insensitive to change [7, 33]. While this is easily
understood when considering whether changes in a single
patient will be detected, it is less obvious how the effect
manifests in a collective analysis such as the Spearman
rank correlation. To illustrate the effect of discretisation
(i.e. using a coarse scale) on correlation coefficients, we
conducted two simple numerical experiments.
Firstly, focussing on absolute correlations, we generated

a set of 100,000 x-values randomly from a continuous, uni-
form distribution. We copied these values to form a per-
fectly correlated set of y-values, which were then rounded
to a given number of levels. Figure 8 shows that as the

10-1 100 101

 of changes

0

0.5

1

R
2

Effect of Discretisation on Correlation in Changes

Fig. 9 In a discretised scale, the correlation of changes with changes in another scale depends on the magnitude of changes relative to the scale
interval. σ refers to the standard deviation of a Gaussian distribution with mean of zero. R2 is the explained variance, based on Spearman rank
correlation
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number of levels decreased from 100 to 2, the Spearman
rank correlation between x and discretised y increasingly
deviated from 1. However, the effect is relatively small,
with R2 = 0.75 for the extreme case of just two levels in
the scale.
In the second experiment, we explored the effect of cor-

relations between changes in values. We fixed the range of
the scale at 0–4 and rounded y to integer values, matching
FTMTRSA.We then generated a set of random variations,
�x, with zero-mean Gaussian distribution and a standard
deviation σ that varied from 0.1 to 10. The same varia-
tions �x were applied to x and the continuous y-values,
before rounding was applied to these shifted y-values. �y
was then calculated by subtracting these rounded, shifted
values from the originals. Figure 9 shows that when the
changes were large relative to the scale interval (1), the
correlation coefficient between �x and �y was close to 1,
but when the average change was smaller than the scale
interval, as for our dataset, R2 was substantially reduced.
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