66 research outputs found

    Behaviour of Reinforced Concrete and Composite Conical Tanks Under Hydrostatic and Seismic Loadings

    Get PDF
    Conical liquid storage tanks are widely used to store different liquids and to provide water supply at cities and municipalities. However, no comprehensive guidelines currently exist in the codes of practice for the structural analysis and design of such tanks. The walls of a conical tank can be made of steel, reinforced concrete, or a combination of the two materials in a composite type of construction in which steel and concrete walls are connected using steel studs. The research conducted in this thesis provides a comprehensive understanding of the structural behaviour of reinforced concrete and composite conical tanks under hydrostatic and seismic loadings. Finite element models for both reinforced concrete and composite tanks are developed and validated. In these models, a 3-D consistent shell element that accounts for the material nonlinear effect is used. The composite model also includes a 3-D contact element simulating the steel studs. The numerical models are utilized to study different behavioural aspects of reinforced concrete and composite conical tanks. An Equivalent Cylinder Method (ECM) is introduced and assessed for the analysis and design of reinforced concrete conical tanks. A set of charts that can be used to determine the adequate thickness and the straining actions for reinforced concrete conical tanks under hydrostatic pressure is developed. An Equivalent Section Method (ESM) for the analysis of composite tanks, which is based on using an equivalent single wall, is introduced and assessed. Both the ECM and ESM are found to be inadequate for the analysis of reinforced concrete and composite conical tanks, respectively. The composite finite element model is extended to include an optimization routine for minimization of the cost of composite conical tanks. The optimization of the design of a real composite conical tank using the developed scheme resulted in a reduction of 32% in the material cost. The study is proceeded by examining the seismic behaviour of composite conical tanks. This is done by extending a previously developed numerical model that takes into account the fluid-structure interaction that occurs during the seismic vibration of a conical tank. A simplified procedure for the analysis of composite conical tanks under seismic loadings is introduced. The procedure is found to be adequate for preliminary design as the differences in the prediction of the natural frequencies and seismic forces are shown to be less than 17% compared to those predicted by the sophisticated numerical model

    Ductile corrosion-free self-centering concrete elements

    Get PDF
    Corrosion is a major factor in the deterioration of reinforced concrete (RC) structures. To mitigate this problem, steel bars can be replaced with glass-fiber-reinforced-polymer (GFRP) bars. However, the lack of ductility of GFRP-RC elements has prevented their use in many structural applications, especially in seismic areas. Superelastic shape memory alloy (SMA) bars have been proposed to be used in seismic areas because of their self-centering characteristics. Also, they have the added advantage of being corrosion resistant. This paper examines the combined use of SMA and GFRP bars to achieve ductile self-centering and corrosion-free elements. The first challenge for such a proposal relates to designing concrete frames, reinforced with SMA and GFRP bars, that have adequate lateral performance in terms of initial stiffness, ductility, and strength. A comprehensive parametric study is conducted to better understand the structural behavior of concrete elements reinforced with SMA and/or GFRP bars. Results from the study are utilized to develop design equations that allow designing an SMA/GFRP RC section to replace a steel RC section, while maintaining lateral strength, stiffness, and ductility. To examine the adequacy of the developed equations, a six-storey concrete frame is designed, and its lateral performance is examined using pushover analysis

    Simplified Analysis of Pure Conical Water Vessels Under Hydrostatic Loading

    Get PDF
    Liquid storage structures represent an important component of modern infrastructure. They can take variety of shapes of which the conical shape is one of the most common configurations. Conical tanks are preferred by both architects and structural engineers because of their appealing look and structural efficiency in addition to their large capacities with relatively small footprint area. The state of stresses in these tanks is rather complicated and needs powerful computational tools. However, in the preliminary design phase, it is important to have a simplified analysis method for selection of economic design parameters including tank height, inclination angle, and footprint radius needed to achieve the desired tank capacity. It is also of importance that the structural engineer has an insight and understanding of the effect of these various parameters on the resulting internal forces acting on the tank. This paper presents a simplified analysis of conical tanks under hydrostatic loading based on the application of the membrane theory. The equations governing the behavior of these structures are first derived. Then, they are applied on several vessels of practical dimensions and the resulting of stresses are presented to give a deeper understanding of the resulting internal actions. Moreover, a simple guide to achieve efficient structural preliminary design parameters for a wide range of tank capacities is introduced

    Seismic performance of ductile corrosion-free reinforced concrete frames

    Get PDF
    Corrosion of steel bars is the main cause of the deterioration of reinforced concrete (RC) structures. To avoid this problem, steel rebars can be replaced with glass-fiber-reinforced-polymer (GFRP). However, the brittle behaviour of GFRP RC elements has limited their use in many applications. The use of shape memory alloy (SMA) and/or stainless steel (SS) rebars can solve this problem, because of their ductile behaviour and corrosion resistance. However, their high price is a major obstacle. To address issues of ductility, corrosion, and cost, this paper examines the hybrid use of GFRP, SS, and SMA in RC frames. The use of SMA provides an additional advantage as it reduces seismic residual deformations. Three frames were designed. A steel RC frame, SS-GFRP RC frame, and SMA-SS-GFRP RC frame. The design criteria for the two GFRP RC frames followed previous research by the authors, which aimed at having approximately equal lateral resistance, stiffness, and ductility for GFRP and steel RC frames. The three frames were then analyzed using twenty seismic records. Their seismic performance confirmed the success of the adopted design methodology in achieving corrosion-free frames that provide adequate seismic performance

    Ductile Corrosion-Free GFRP-Stainless Steel Reinforced Concrete Elements

    Get PDF
    Corrosion of steel rebars is known to cause deterioration of concrete structures that can lead to catastrophic failures. To mitigate this problem, steel rebars can be replaced with Glass Fiber-Reinforced Polymer (GFRP) rebars. However, the lack of ductility of GFRP-reinforced elements has prevented their use in many structural applications, especially in seismic areas. Stainless Steel (SS) rebars are corrosion resistant and have adequate energy absorption and ductility. However, they are much more expensive than steel rebars. This paper proposes the combined use of SS and GFRP rebars to achieve ductile and corrosion-free elements. The first challenge for such a proposal relates to designing SS-GFRP reinforced concrete frame with adequate lateral performance in terms of initial stiffness, ductility, and strength. Design equations, which are based on a comprehensive parametric study, are developed to allow designing such a frame. A six-storey concrete frame is then designed using the proposed equations and its lateral performance is examined using pushover analysis

    Antiproliferative, antimicrobial, and antifungal activities of polyphenol extracts from Ferocactus species

    Get PDF
    Polyphenols, obtained from natural resources, may possess important pharmacological effects. The polyphenolic profiles of the stem extracts of six Ferocactus species (sp.): F. gracilis, F. pottsii, F. herrerae, F. horridus, F. glaucescens, and F. emoryi, were measured using high-performance liquid chromatography (HPLC) with diode-array detection (DAD). Additionally, anticancer, antibacterial, and antifungal activities were examined. Results showed the presence of high to moderate amounts of polyphenols in the extracts (phenolic acids: Protocatechuic acid, 3,4-dihydroxyphenylacetic acid, cffeic acid, and vanillic acid; flavonoids: Rutoside and quercitrin). The highest amounts of 3,4-dihydroxyphenylacetic acid were found in F. glaucescens ((132.09 mg 100 g1g^{-1} dry weight (DW)), F. pottsii (75.71 mg 100 g1g^{-1} DW), and F. emoryi (69.14 mg 100 g1g^{-1} DW) while rutoside content was highest in F. glaucescens (107.66 mg 100 g1g^{-1} DW). Maximum antiproliferative activities were observed against HeLa and Jurkat cancer cells, with F. glaucescens, F. emoryi, and F. pottsii showing the highest anticancer activity. Most bacteria were sensitive to Ferocactus sp. stem extracts. Escherichia coli and Staphylococcus aureus were the most sensitive. Excellent antifungal effects were observed against Aspergillus ochraceus and A. niger. However, Penicillium funiculosum, P. ochrochloron, and Candida albicans were relatively resistant. This is the first study reporting novel sources of polyphenols in Ferocactus sp. with anticancer and antimicrobial activities

    Mammillaria species : polyphenols studies and anti-cancer, anti-oxidant, and anti-bacterial activities

    Get PDF
    Discovering new natural resources of polyphenols is the aim of many recent studies in the field of natural product research. This study tentatively investigated the polyphenols profile of the stems of seven Mammillaria species (M. rhodantha, M. spinosissima, M. hahniana, M. crucigera, M. candida, M. albilanata, and M. muehlenpfordtii) using high performance liquid chromatography with DAD detector (HPLC-DAD) method. Furthermore, the anti-cancer, anti-oxidant, and anti-bacterial potentials of these extracts as well as major identified phenols were explored. The HPLC-DAD study confirmed the availability of six phenolic acids, including gentisic acid, chlorogenic acid, caffeic acid, protocatechuic acid, sinapic acid, and p-hydroxybenzoic acid. The dominant compounds were: gentisic acid in M. rhodantha and M. spinosissima; chlorogenic acid in M. muehlenpfordtii, M. crucigera, and M. rhodantha; and caffeic acid in M. rhodantha, M. crucigera, and M. spinosissima. Stems of Mammillaria sp. showed antiproliferative e ects against HeLa, MCF-7, and Jurkat cells. In HeLa and MCF-7 cells, the best antiproliferative activities were found in the treatments with M. rhodantha, M. spinosissima, and M. muehlenpfordtii. The apoptotic assay of M. rhodantha, M. spinosissima, and M. muehlenpfordtii showed accumulation of necrotic cells in the early and late apoptotic phase. M. rhodantha, M. spinosissima, and M. muehlenpfordtii showed the highest anti-oxidant activities using 2,2-diphenyl-1-picrylhydrazyl (DPPH), -carotene bleaching, and ferric reducing anti-oxidant power (FRAP) assays. M. rhodantha was the best source of antioxidants. Mammillaria sp. showed moderate anti-bacterial effects against bacteria and the highest effects were found using the extracts of M. rhodantha, M. spinosissima, M. crucigera and M. muehlenpfordtii against most bacteria. The anti-bacterial activities were attributed to other phenolic compounds (e.g., chlorogenic acid) than gentisic acid, which was not active against most bacteria. Mammillaria sp. could be considered to be an important natural source of phenolic acids with anti-cancer, anti-bacterial, and anti-oxidant activities

    Levering proteomic analysis of Pseudomonas fluorescens mediated resistance responses in tomato during pathogenicity of Fusarium oxysporum f. sp. oxysporum

    Get PDF
    The tomato, one of the world’s most extensively cultivated and consumed vegetable crops is negatively impacted by various pathogens. This study aimed to observe the differentially expressed proteins in tomato samples in plant–pathogen-biocontrol interactions. The fungal pathogen associated with wilted plants were isolated and identified based on its morphological and molecular characteristics. Fourteen strains of Pseudomonas fluorescens from agricultural soils were identified and described using biochemical assays, molecular analyses, and screening for antagonistic ability against the Fusarium wilt pathogen. Results demonstrated that the potential of P. fluorescens (TPf12) positively influenced the expression of antagonism against tomato wilt disease. A total of 14 proteins expressed differently were revealed in the 2D-PAGE-MS investigation. Proteins such as nucleoside diphosphate kinase, phenylalanine ammonia-lyase, protein kinase family protein, Ser/Thr protein kinase-like are unchanged in FOL pathogen interaction, but up-regulated in FOL + TPf12 treated roots, and lipid transfer-like protein, and phenylalanine ammonia-lyase were down-regulated in FOL infested roots and upregulated in FOL + TPf12 treated tomato roots. Phenylalanine ammonia-lyase protein expression is commonly found in TPf12 bioenriched roots, and FOL + TPf12 treated roots, indicating its role in response to the application of TPf12 in tomato. A GC–MS analysis was performed to detect the bioactive metabolites synthesized by TPf12. Molecular docking investigations were conducted using the maestro’s GLIDE docking module of the Schrodinger Software program. Among the secondary metabolites, Cyclohexanepropanoic acid, 2-oxo-, methyl ester (CAS), and 3-o-(4-o-Beta-D-Galactopyranosyl-Beta-D-Galactopyraosyl)-2-Acetylamino-2-Deoxy-D-Galactose were shown to be top-ranked with a least docking score against each differently expressed proteins. The profiled molecules expressed differently due to plant-pathogen-biocontrol interactions may be directly or incidentally involved in the wilt disease resistance of tomato plants

    Assessment of mitigation alternatives for differential shortening in high-rise reinforced concrete buildings

    No full text
    Abstract Selecting appropriate structural system for reinforced concrete (RC) buildings is essential in the design process to satisfy serviceability and strength requirements. Using ordinary analysis (OA) may result in inaccurate estimation of differential shortenings (DS) between vertical supporting elements which might lead to structural and architectural problems. Efficiency of staged analysis including time-dependent effects (SAT) has been recently recognized for the analysis of these buildings due to considering the sequential nature of construction. In this research, eight RC buildings with heights ranging between 35 and 175 m and various structural systems, namely rigid frames (RF), shear walls (SW), wall frames (WF), and tube in tube (TT), are analyzed. An assessment is conducted for the adequacy of three mitigation alternatives to decrease changes between DS estimated using OA and SAT. In Alternative 1, cross sections of all vertical elements (columns and shear walls) are increased by 50%. Alternative 2 is performed by iteratively proportioning the dimensions of internal columns without changing the cross sections of edge and corner vertical elements. One outrigger system is introduced along the height of buildings with WF and TT systems in Alternative 3. Analysis of the eight buildings is implemented by developing a numerical model considering the construction stages and time-dependent effects. The alternatives assessment is conducted by comparing differential displacements (DD), bending moments, and shearing forces before and after mitigation obtained from OA and SAT. The numerical results showed that Alternative 1 is not efficient in mitigating the differences between the OA and SAT for all the studied buildings. However, an optimum solution can be achieved using the Alternative 2 for all investigated systems. Also, Alternative 3 was found adequate in partially mitigating the differences between the two analyses for the buildings with WF and TT systems
    corecore