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Abstract 

Corrosion of steel rebars is known to cause deterioration of concrete structures that can lead to 
catastrophic failures. To mitigate this problem, steel rebars can be replaced with Glass Fiber-
Reinforced Polymer (GFRP) rebars. However, the lack of ductility of GFRP-reinforced elements 
has prevented their use in many structural applications, especially in seismic areas. Stainless Steel 
(SS) rebars are corrosion resistant and have adequate energy absorption and ductility. However, 
they are much more expensive than steel rebars. This paper proposes the combined use of SS and 
GFRP rebars to achieve ductile and corrosion-free elements. The first challenge for such a proposal 
relates to designing SS-GFRP reinforced concrete frame with adequate lateral performance in 
terms of initial stiffness, ductility, and strength. Design equations, which are based on a 
comprehensive parametric study, are developed to allow designing such a frame. A six-storey 
concrete frame is then designed using the proposed equations and its lateral performance is 
examined using pushover analysis. 
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1. Introduction 

The use of Fiber-Reinforced Polymer (FRP) rebars as a replacement for steel rebars has emerged 

as an innovative solution to overcome the corrosion problem. Moreover, FRP rebars have the 

advantages of: (1) high resistance to electrical and magnetic fields, (2) high strength, (3) 

lightweight, and (4) availability [1, 2, 3]. Due to their inability to dissipate seismic energy, the use 

of FRP rebars in concrete structures is limited [4]. FRP reinforced concrete (RC) structures have 

significantly less ductility and energy dissipation capacity than steel RC structures. 

The behaviour of FRP RC elements was examined by many researchers [5, 6, 7, 8, 9, 10, 11, 12, 

13, 14, 15, 16, 17, 18, 19]. An experimental program for concrete columns reinforced with 

longitudinal and transverse GFRP rebars was conducted by Tobbi et al. [20, 21, 22]. Their study 

revealed that GFRP RC columns withstood loads similar to or higher than steel RC columns. The 

experimental results were then used to develop a strength model for square columns reinforced 

with longitudinal and transverse GFRP reinforcement. Experimental programs on circular concrete 

columns reinforced with GFRP hoops and spirals were performed by Pantelides et al. [23], 

Mohamed et al. [24], and Afifi et al. [25]. The behaviour of GFRP-confined concrete cores were 

found to be similar to that of steel-confined concrete cores. Based on the experimental results, 

Afifi et al. [26] developed a mechanical model for circular concrete columns reinforced with GFRP 

spirals or hoops. The model accounted for the transverse reinforcement volumetric ratio, strength, 

spacing, and configuration. Another experimental study on circular and square concrete columns 

with longitudinal and transverse GFRP hoops/spirals was carried out by Prachasaree et al. [19]. 

They concluded that spiral transverse reinforcement is the most effective in terms of confining 

pressure and ductility. 
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Another material that received the interest of the research community is Stainless Steel (SS). Its 

heat and corrosion resistance, ability to withstand impact and shock, and little cost of maintenance 

make it a perfect replacement for steel rebars in concrete structures [27, 28, 29, 30]. However, the 

high cost of SS and the lack of design guidelines/standards have limited such a replacement. Billah 

and Alam [17] investigated analytically the seismic behavior of hybrid RC columns with SS at the 

plastic hinge zone and FRP at the other regions, and compared their performance to that of a SS 

reinforced columns in terms of base shear-displacement, base shear demand/capacity ratio, 

ductility, residual displacement, and energy dissipation capacity. In their investigation, a pushover 

analysis was conducted for the SS and FRP-SS reinforced columns. Also, the same columns were 

analyzed under 20 natural ground motions. The analytical results showed that the SS RC column 

experienced higher ductility as compared to the FRP-SS RC column. It is worth mentioning that 

Billah and Alam [17] utilized the same steel and concrete areas in both the FRP-SSRC column and 

the SS RC column. The low modulus of elasticity for FRP led to much lower stiffness, strength 

and ductility for the FRP-SSRC column. 

In the present study, the authors adopted the concept of a hybrid reinforcement configuration 

(GFRP and SS) to achieve an improved ductility and high corrosion resistance at a reasonable cost. 

The SS rebars are assumed to reinforce the plastic hinge regions of typical RC frames. The FRP 

and SS rebars are assumed to be connected using suitable couplers as suggested by Alam et al. 

[31]. The objectives of this study are: (1) to assess the performance of concrete elements reinforced 

with SS rebars at the plastic hinge regions and GFRP rebars at the other regions, and (2) to develop 

design criteria to ensure that the GFRP-SS frame lateral performance is acceptable in terms of 

stiffness, strength, and ductility. The following sections provide details about the modeling 
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assumptions, lateral performance of GFRP-SS RC frames, parametric study to achieve design 

procedure for FRP-SS RC frames, and a case study to examine the developed design procedure. 

 

2. Modeling Assumptions 

2.1 Material Constitutive Models 

The concrete is modeled using a uniaxial nonlinear constant confinement concrete model that 

follows the constitutive relationship proposed by Mander et al. [32] and the cyclic rules proposed 

by Martinez-Rueda and Elnashai [33]. Two different concrete compressive strengths (𝑓௖
ᇱ) are 

considered (30 MPa and 40 MPa). The yield strength, modulus of elasticity, and strain hardening 

parameters for the steel rebars are assumed to be 400 MPa, 200,000MPa, and 0.02, respectively. 

The properties of the transverse GFRP reinforcement, summarized in Table 1, were assumed based 

on the values reported Tobbi et al. [21]. Where Ef is the modulus of elasticity, fftu is the ultimate 

tensile strength, and εfu is the ultimate tensile strain. The properties of the longitudinal GFRP rebars 

depend on the rebar size and its modulus of elasticity. The assumed values are summarized in 

Table 2. 

The stress-strain curve of SS is assumed to be bilinear as shown in Fig. 1. The yield strength, 

modulus of elasticity, and strain hardening parameters for the SS rebars are assumed to be 400 

MPa, 190,000MPa, and 0.025, respectively. 

 

Table 1 Transverse GFRP reinforcement properties recommended by Tobbi et al. [21]  

 Ef (MPa) fftu (MPa) εfu (%) 
Straight portion 44,000 640 1.45 
Bent portion 400 
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Table 2 Longitudinal GFRP reinforcement properties 

Bar Diameter 

(mm) 

Ef = 46,000 MPa Ef = 65,000 MPa 

fftu(MPa) εfu (%) fftu (MPa) εfu(%) 

10 827 1.80 1372 2.11 

13 758 1.65 1312 2.02 

16 724 1.57 1184 1.82 

19 690 1.50 1105 1.70 

22 655 1.42 1059 1.63 

25 620 1.35 1000 1.54 

 

 

Fig. 1 Stress-strain curve of SS under cyclic load. 
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2.2 Modeling  

Beams and columns are individually modeled as cantilevers with length of (0.5L) or (0.5 H), where 

L is the beam span and H is the column height. A lateral load, PL, is assumed to be acting at the 

cantilever’s tip. The value of the axial load is assumed zero for the beams and PA for the columns. 

Ten displacement-based frame elements in the SeismoStruct model [34] are used to model each of 

the beams and columns. The spread of inelasticity along the member length is captured using 200 

fibers. The section stress-strain state is obtained through the integration of the nonlinear uniaxial 

stress-strain response of the individual fibers forming the cross section. 

When modeling a complete RC frame, the same elements are utilized. Additionally, the beams are 

modeled as T-sections to account for the floor slab. The beam-column joints are assumed to be 

rigid. Dead loads are then applied before applying the lateral loads. 

 

2.3 Failure Criteria 

The ultimate strain of the unconfined concrete in the beams (𝜀௨(௨௡௖௢௡௙௜௡௘ௗ)
௦ ) is assumed equal to 

0.004. For confined steel RC columns, the core concrete ultimate strain (𝜀௨(௖௢௡௙௜௡௘ௗ)
௦ ) is calculated 

using Eq. (1) by Paulay and Priestley [35]. 

𝜀௨(௖௢௡௙௜௡௘ௗ)
௦ = 𝜀௨(௨௡௖௢௡௙௜௡௘ௗ)

௦ +
1.4𝜌௦𝑓௬𝜀௦௠

𝑘௛
௦𝑓௖

ᇱ
                                   (1) 

where 𝜌௦ is the ratio of the volume of transverse reinforcement of concrete core measured to the 

outside of the transverse reinforcement, 𝜀௦௠ is the steel strain at maximum tensile stress, 𝑘௛
௦  is the 

confinement factor, which can be obtained from the charts provided by Priestley and Wood [36]. 

The ultimate strain for columns confined with GFRP lateral stirrups (ε௨
௙

) is calculated using Eq. 

(2) by Afifi et al. [26]. 
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ε௨
௙

= [0.000937(𝑓௖௢
ᇱ )଴.ଶହ] ∙ ቎0.63 + (70.6 − 1.76𝑓௖௢

ᇱ )ඨ
𝑓௟௘

𝑓௖௢
ᇱ

቏    (2) 

where 𝑓௖௢
ᇱ  is the strength of unconfined concrete and 𝑓௟௘ is the effective lateral pressure. 𝑘௛

௙ is the 

confinement factor for GFRP stirrups, which can be obtained using Eq. (3) by Tobbi et al. [22]. 

𝑘௛
௙

= 1 + 1.23 ൬
𝑓௟௘

𝑓௖௢
ᇱ

൰
଴.଻ଵ

                    (3) 

Both the beam and column elements are assumed to fail when the concrete reaches the ultimate 

strain. Frames are assumed to fail when the ultimate strain of concrete or the ultimate strain of 

steel is reached in all columns of the same storey. 

The shear in the GFRP-SS RC elements is checked using the equations provided in ACI 318-14 

[37] standard as recommended by Bentz et al. [38]. 

 

3. Lateral Performance of GFRP-SS RC Frames 

A six-storey steel RC frame (Frame 1) designed by Youssef and Elfeki [39] and shown in Fig. 2 

is considered in this section. The yield strength of the steel rebars is 400 MPa and the concrete 

compressive strength is 28 MPa. Cross sections of the beams and columns are presented in Fig. 3. 

Frame 2 is a revised design of Frame 1, which utilizes SS and GFRP instead of the steel rebars. 

The areas of the concrete and the rebars are kept unchanged. Steel rebars are replaced with equal 

areas of GFRP rebars with Ef of 46,000 MPa except at the plastic hinge areas, where SS rebars are 

used. GFRP transverse reinforcement is used in both the beams and the columns. The length of the 

SS rebars is calculated using Eq. (4) that was proposed by Paulay and Priestley [35] and 

recommended for SS RC elements by Billah and Alam [17]. Perfect bond is assumed between the 

concrete and the GFRP rebars, as suggested by Barris et al. [13] and Ascione et al. [40]. This 
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assumption is valid as long as the GFRP rebars have adequate embedment in the concrete. The 

GFRP rebars are also anchored to the stainless steel rebars using mechanical couplers, which is 

expected to prevent any slippage [17]. 

𝐿௣ = 0.08 ∙ 𝐿 + 0.022 ∙ 𝑑ௌௌ ∙ 𝑓௬                                                       (4) 

where L is half the clear span of the considered beam, dSS is the SS rebar diameter, and fy is the 

yield strength of the SS rebars. 

 

Fig. 2 Elevation and plan views of Frame 1 [39] 

 



 

9 

 

Fig. 3 Cross sections of beams and columns of Frame 1 [39] 

 

The pushover curves for Frames 1 and 2 are shown in Fig. 4. It can be observed that Frame 2, 

which is expected to be superior in corrosion protection and residual deformations, has lower 

failure load (-9%), displacement at failure (-3%), initial stiffness (-60%), and ductility (-50%). 

Such performance is directly related to the modulus of elasticities of the GFRP rebars that is much 

lower than that of steel rebars. The results emphasize the need for new design criteria for frames 

reinforced with GFRP and SS rebars.  
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Fig. 4 Pushover curves for Frame 1 and Frame 2. 

 

4. Design of FRP-SS RC Frames 

A comprehensive parametric study is conducted to understand the lateral performance of RC 

elements reinforced with combination of SS and GFRP rebars. Results from this study are then 

utilized to form a design method for such elements. 

 

4.1 Parametric Study 

The parameters for the analyzed beams are: width (bb=250 or 400 mm),height (hb=400, 600, or 

800 mm), length (L= 5.0 or 7.0 m), area of tension rebars (As = minimum reinforcing area Asmin, 

half of the maximum allowable area ½Asb, or maximum allowable area Asb), area of compression 

steel rebars (As’=0% or 20%As), and length of the SS rebars (LSS=𝐿௣ or 
ଵ

ଶ
𝐿௣).The reinforcement 

ratio at the tension side (𝜌) is defined as 𝜌 =
୅ୱ

௕್௛್
. 

The parameters for the analyzed columns are: width (bb=250 or 400mm), section height (hb=400, 

600, or 800 mm), and column height (3.0 m).Only GFRP rebars are used in the columns as capacity 
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design requires plastic hinges to form in the beams. Three levels of compressive axial load (10%, 

40%, and 70% of the column axial load capacity) are considered. The reinforcement ratio is varied 

from 1% to 4% with an increment of 1%. The number of longitudinal rebars and the arrangement 

of the stirrups are selected similar to those of the steel reinforced columns.  

The analysis for each of the considered cases of the GFRP-SS RC elements (576 beams and 288 

columns) is conducted by applying the axial load, PA, followed by an incremental lateral load, PL. 

The lateral performance is then compared to that of an element reinforced with steel rebars (Steel 

RC element) in terms of the overall performance, ductility, initial stiffness, and capacity. The 

expected lateral performance of a steel RC element and the corresponding GFRP-SS element are 

shown in Fig. 5. The areas formed between the two curves, 𝐴ଵ
௖  and 𝐴ଶ

௖ , are calculated. If the 

difference between the two areas is less than 5%, the overall performance is judged as acceptable. 

The ductility, initial stiffness and capacity are also compared and a difference less than 10% is 

considered acceptable. 

If the lateral performance of the GFRP-SS element is judged unacceptable, its design is revised by 

changing the section height by a factor 𝐹௛ and/or the area of the reinforcing rebars by a factor 𝐹௥. 

Values of 0.5 to 2.0 with an increment of 0.05 are examined for each factor until a section with 

almost the same lateral performance as the steel RC section is identified. SeismoStruct batch 

facility [34] is used to conduct the required iterations. For the GFRP-SS RC elements, it was found 

that shear failure is not a concern and that the design is governed by flexure. 
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Fig. 5 Expected pushover curves of Steel RC element and GFRP-SS element. 

 

The modifying factors for the beams are found to be affected by the compressive (𝜌,) and tension 

(𝜌) reinforcement ratios, properties of the GFRP rebars, as well as the length of SS rebars (LSS). 

On the other hand, the modifying factors for the columns are affected by the level of the axial 

compressive load (P), reinforcement ratio(𝜌) as well as the modulus of elasticity of GFRP (Ef). 

Variation of the beam modifying factors is shown in Figs. 6 and 7 for Ef of 46,000 MPa and 65,000 

MPa, respectively. The factors in Fig. 7 are lower than those in Fig. 6 because of the higher Ef. 

The height factor (𝐹௛) is always greater than 1 to adjust the element stiffness and it decreases with 

the increase of either 𝜌 or 𝜌,.The reinforcement factor (𝐹௥) reduces the area of the rebars to maintain 

the load capacity at approximately the same level. The ductility is provided by the SS rebars. For 

Ef  of 46,000 MPa, Fr slightly increased with the increase of 𝜌 such that it varied from 0.65 to 0.69 

for values of 𝜌 varying between 0.27% and 4.22%. However, for Ef of 65,000 MPa, Fr was found 

to be a constant value of 0.69 for all values of 𝜌 and 𝜌,. 
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(a) ρ' = 0, LSS = Lp                                           (b) ρ' = 0, LSS = ½ Lp 

 
(c) ρ' = 0.2ρ, LSS = Lp                                                 (d) ρ' = 0.2ρ, LSS = ½ Lp 

  

Fig. 6 Modifying factors for GFRP-SS RC beams with Ef = 46,000 MPa 
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            (a) ρ' = 0, LSS = Lp                                                     (b) ρ' = 0, LSS = ½Lp 

 
            (c) ρ' = 0.2ρ, LSS = Lp                                      (d) ρ' = 0.2ρ, LSS = ½ Lp 

 

Fig. 7 Modifying factors for GFRP-SS RC beams with Ef= 65,000 MPa. 

 

The modifying factors for the columns are shown in Figs. 8 and 9 for Ef = 46,000 MPa and 65,000 

MPa, respectively. For Ef = 46,000 MPa and 𝜌 values of 1% to 4%, Fr varies from 0.84 to 0.90 
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the column’s compressive axial force. For Ef = 65,000 MPa and 𝜌 values of 1% to 4%, Fr varies 

from 0.84 to 1.00 and Fh varies from 1.06 to 1.10. 

 

(a) P = 0.1Pmax                                                  (b) P = 0.4Pmax 

 

(c) P = 0.7Pmax 

 

Fig. 8 Modifying factors for GFRP RC columns with Ef= 46,000 MPa. 
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(a) P = 0.1Pmax                                                      (b) P = 0.4Pmax 

 

 

(c) P = 0.7Pmax 

Fig. 9 Modifying factors for GFRP RC columns with Ef= 65,000 MPa. 
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for beams reinforced with GFRP and SS rebars. Eqs. (7) and (8) are for columns reinforced with 

GFRP. These equations were derived using a trial and error procedure. Applying in the equations 

requires knowledge of the reinforcement ratio, the plastic hinge length, the column axial load, and 

the GFRP modulus of elasticity. 
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⎪
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⎪
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𝐸௙
ቇ

ଵ.ହହ

1.48 ቆ
46,000 𝑀𝑃𝑎

𝐸௙
ቇ

ଵ.ହ଼

2.42 ≤ 𝜌 ≤ 2.54

4.04 ≤ 𝜌

𝐴𝑇 (Lୗୗ  = L୔)(5𝑎) 

𝐹௛ =

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧1.85 ቆ

46,000 𝑀𝑃𝑎

𝐸௙
ቇ

଴.ଷହ

𝜌 ≤ 0.36

1.80 ቆ
46,000 𝑀𝑃𝑎

𝐸௙
ቇ

ଵ.ଷଶ

1.21 ≤ 𝜌 ≤ 2.12

1.75 ቆ
46,000 𝑀𝑃𝑎

𝐸௙
ቇ

ଵ.ଷଶ

1.66 ቆ
46,000 𝑀𝑃𝑎

𝐸௙
ቇ

ଵ.ସ଴

2.42 ≤ 𝜌 ≤ 2.54

4.04 ≤ 𝜌

𝐴𝑇 (Lୗୗ  =
1

2
L୔) (5𝑏) 

𝐹௥ = ቄ
0.6

0.69

𝜌 ≤ 0.36
𝜌 ≥ 1.21

      𝐴𝑇  𝐸௙ = 46,000 𝑀𝑃𝑎 𝑎𝑛𝑑 (Lୗୗ  = L୔)(6𝑎) 

𝐹௥ = ቊ
0.6

0.65
0.69

𝜌 ≤ 2.12
2.54 ≤ 𝜌 ≤ 2.42

𝜌 ≥ 4.04
      𝐴𝑇  𝐸௙ = 46,000 𝑀𝑃𝑎 𝑎𝑛𝑑 ൬Lୗୗ  =

1

2
L୔൰ (6𝑏) 

𝐹௥ = 0.69        𝐴𝑇  𝐸௙ = 65,000 𝑀𝑃𝑎 (6𝑐) 
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𝐹௛ = 0.037𝜁ଵ𝜌 + 1.1𝜂ଵ  (7a) 

𝜁ଵ = ቐ

+0.27 𝐸௙ = 65,000 𝑀𝑃𝑎 𝑎𝑛𝑑 𝑃 = 0.1𝑃௠௔௫  𝑜𝑟 0.4𝑃௠௔௫

−0.08
+1.0

𝐸௙ = 65,000 𝑀𝑃𝑎 𝑎𝑛𝑑 𝑃 = 0.7𝑃௠௔௫

𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

    (7b) 

𝜂ଵ =  0.95 𝐸௙ = 65,000 𝑀𝑃𝑎 𝑎𝑛𝑑 𝑃 = 0.1𝑃௠௔௫  𝑜𝑟 0.4𝑃௠௔௫(7c) 

 

𝐹௥ = −0.02𝜁ଶ𝜌 + 0.93𝜂ଶ(8a) 

𝜁ଶ = ቐ

+2.0 𝐸௙ = 65,000 𝑀𝑃𝑎 𝑎𝑛𝑑  0.4𝑃௠௔௫

+1.65
+1.0

𝐸௙ = 65,000 𝑀𝑃𝑎 𝑎𝑛𝑑  0.7𝑃௠௔௫

𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (8b) 

𝜂ଶ = ቐ

1.10 𝐸௙ = 65,000 𝑀𝑃𝑎 𝑎𝑛𝑑  0.4𝑃௠௔௫

1.10
+1.0

𝐸௙ = 65,000 𝑀𝑃𝑎 𝑎𝑛𝑑  0.7𝑃௠௔௫

𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (8c) 

 

5. Case Study 

The six-storey RC frame (Frame 1) is considered to further examine the developed design method. 

Frames 2 and 3 are assumed to have the same section dimensions as Frame 1. The reinforcing 

rebars are replaced with similar areas of GFRP or SS rebars in Frames 2 and 3. Ef is assumed 

46,000 MPa for Frame 2 and 65,000 MPa for Frame 3. 

The design of Frames 4 and 5 follows the developed method which is presented in section 4.2.The 

value of 𝜌 at the plastic hinge region for Beams 1 and 2, Fig.2, is 0.77%. The 𝜌 values at other 

regions of Beams 1 and 2 are 0.44% and 0.52%, respectively. For the columns, the values of 𝜌are 

2.3%, 2.5%, 2.33%, 2.7%, and 1.6% for Col 1, Col 2, Col 3, Col 4, and Col 5, respectively. The 

exterior column axial forces are 34%, 27%, 29%, 21%, 16%, and 12% of the axial load capacities 

of the columns in the 1st, 2nd, 3rd, 4th, 5th, and 6th storey, respectively. The axial load ratios for the 

interior columns are 30%, 24%, 26%, 20%, 14%, and 9%.The section height and the area of the 
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reinforcing rebars are adjusted using the developed method. The modifying factors, obtained from 

the developed method for Frames 4 and 5, are presented in Table 3. The pushover curves for the 

five frames are shown in Fig. 10. The differences between the initial stiffness, failure load, 

strength, and ductility of Frame 1, Frame 2, and Frame 3 are quite significant. On the other hand, 

Frames 4 and 5 lateral performance is very similar to that of Frame 1. For the steel and GFRP-SS 

RC frames, it was found that shear failure is not a concern and that the design is governed by 

flexure. The difference between the vertical displacements at failure of the three frames did not 

exceed 10%. 

 

Table 3 Modifying factors for Frames 4 and 5 

 Frame 4 Frame 5 

Section Fh Fr Fh Fr 

Beam 1P 1.72 0.64 1.29 0.69 

Beam 2P 1.72 0.64 1.29 0.69 

Beam 1O 1.82 0.61 1.57 0.69 

Beam 2O 1.80 0.62 1.50 0.69 

Col 1 1.19 0.89 1.12 0.93 

Col 2 1.19 0.88 1.12 0.92 

Col 3 1.19 0.88 1.12 0.93 

Col 4 1.20 0.87 1.12 0.93 

Col 5 1.20 0.87 1.12 0.90 
P At the plastic hinge region O Outside the plastic hinge region 
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Fig. 10 Lateral performance of Frames 1 to 5. 

 

6. Conclusions 

In this paper, the concept of hybrid GFRP and SS rebars is adopted to have a corrosion free RC 

frame that possesses adequate ductility, strength, and stiffness. The SS rebars are used as 

reinforcement at the plastic hinge regions to provide the system with adequate ductility and energy 

dissipation. Suitable couplers are assumed to link the FRP and SS rebars. The objectives of this 

study are: (1) assessing the performance of concrete elements reinforced with SS rebars at the 

plastic hinge regions and GFRP rebars at the other regions, and (2) developing design criteria to 

ensure that the GFRP-SS frame lateral performance is acceptable in terms of stiffness, strength, 

and ductility. 

A six-storey steel RC frame (Frame 1) is considered. Frames 2 and 3 are revised designs of Frame 

1, which utilize SS and GFRP instead of steel rebars. The pushover curves for the three frames 

show that Frames 2 and 3, which are expected to be superior in corrosion protection and residual 
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deformations, have lower failure load, displacement at failure, initial stiffness, and ductility when 

compared to Frame 1. 

A comprehensive parametric study is then conducted to form a design method for such elements. 

576 beams and 288 columns are considered in this study. Two modification factors for the section 

height and area of steel are proposed. Values for these factors can be estimated using the equations 

(5), (6), (7), and (8). The developed factors are used to modify the design of Frames 2 and 3 and 

they have led to a lateral performance that is comparable to the steel RC frame. 

Conclusions of this study are limited to the examined cases. Future analytical and experimental 

studies investigating elements critical in shear and elements having GFRP rebars with slippage 

problems are needed. 
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