24 research outputs found

    Interferon-induced protein with tetratricopeptide repeats 5 of black fruit bat (Pteropus alecto) displays a broad inhibition of RNA viruses

    Get PDF
    Bats are natural host reservoirs and have adapted a unique innate immune system that permits them to host many viruses without exhibiting symptoms. Notably, bat interferon stimulated genes (ISGs) have been shown to play antiviral roles. Interferon induced protein with tetratricopeptide repeats 5 (IFIT5) is a well-characterised ISG in humans with antiviral activities against negative-sense RNA viruses via inhibiting viral transcription. Here, we aim to investigate if Pteropus alecto (pa) IFIT5 (paIFIT5) possess the ability to inhibit negative-sense RNA viruses. Initially, gene syntenic and comparative structural analyses of multiple animals highlighted a high level of similarity between Pteropus alecto and human IFIT5 proteins. Our results showed that paIFIT5 was significantly inducible by viral and dsRNA stimulation. Transient overexpression of paIFIT5 inhibited the replication of vesicular stomatitis virus (VSV). Using minireplicon and transcription reporter assays, we demonstrated the ability of paIFIT5 specifically to inhibit H17N10 polymerase activity. Mechanistically, we noticed that the antiviral potential of paIFIT5 against negative sense RNA viruses was retributed to its interaction with 5’ppp containing RNA. Taken together, these findings highlight the genetic and functional conservation of IFIT5 among mammal

    Deep Structural Analysis of Myriads of Omicron Sub-Variants Revealed Hotspot for Vaccine Escape Immunity

    Get PDF
    The emergence of the Omicron variant has reinforced the importance of continued SARS-CoV-2 evolution and its possible impact on vaccine effectiveness. Specifically, mutations in the receptor-binding domain (RBD) are critical to comprehend the flexibility and dynamicity of the viral interaction with the human agniotensin-converting enzyme 2 (hACE2) receptor. To this end, we have applied a string of deep structural and genetic analysis tools to map the substitution patterns in the S protein of major Omicron sub-variants (n = 51) with a primary focus on the RBD mutations. This head-to-head comparison of Omicron sub-variants revealed multiple simultaneous mutations that are attributed to antibody escape, and increased affinity and binding to hACE2. Our deep mapping of the substitution matrix indicated a high level of diversity at the N-terminal and RBD domains compared with other regions of the S protein, highlighting the importance of these two domains in a matched vaccination approach. Structural mapping identified highly variable mutations in the up confirmation of the S protein and at sites that critically define the function of the S protein in the virus pathobiology. These substitutional trends offer support in tracking mutations along the evolutionary trajectories of SAR-CoV-2. Collectively, the findings highlight critical areas of mutations across the major Omicron sub-variants and propose several hotspots in the S proteins of SARS-CoV-2 sub-variants to train the future design and development of COVID-19 vaccines

    Unmasking the Ongoing Challenge of Equid Herpesvirus- 1 (EHV-1) : A Comprehensive Review

    Get PDF
    Equid herpesviruses (EHVs) are a group of highly impactful viral pathogens that affect horses, presenting a substantial risk to the global equine industry. Among these, equid herpesvirus-1 (EHV-1) primarily causes respiratory infections. However, its ability to spread to distant organs can lead to severe consequences such as abortion and neurological diseases. These viruses can enter a dormant phase, with minimal activity, and later reactivate to trigger active infections at any time. Recently, there has been a notable rise in the prevalence of a particularly devastating strains of EHV-1 known as equid herpesviral myeloencephalopathy (EHM). In the light of dynamic nature of EHV-1, this review provides a thorough overview of EHV-1 and explores how advances in viral biology affect the pathophysiology of viral infection. The information presented here is crucial for understanding the dynamics of EHV-1 infections and creating practical plans to stop the virus's global spread among equid populations

    Chickens Expressing IFIT5 Ameliorate Clinical Outcome and Pathology of Highly Pathogenic Avian Influenza and Velogenic Newcastle Disease Viruses

    Get PDF
    Innate antiviral immunity establishes first line of defense against invading pathogens through sensing their molecular structures such as viral RNA. This antiviral potential of innate immunity is mainly attributed to a myriad of IFN-stimulated genes (ISGs). Amongst well-characterized ISGs, we have previously shown that antiviral potential of chicken IFN-induced proteins with tetratricopeptides repeats 5 (chIFIT5) is determined by its interaction potential with 5'ppp containing viral RNA. Here, we generated transgenic chickens using avian sarcoma-leukosis virus (RCAS)-based gene transfer system that constitutively and stably express chIFIT5. The transgenic chickens infected with clinical dose (EID50 104 for HPAIV and 105 EID50 for vNDV) of high pathogenicity avian influenza virus (HPAIV; H5N1) or velogenic strain of Newcastle disease virus (vNDV; Genotype VII) showed marked resistance against infections. While transgenic chickens failed to sustain a lethal dose of these viruses (EID50 105 for HPAIV and 106 EID50 for vNDV), a delayed and lower level of clinical disease and mortality, reduced virus shedding and tissue damage was observed compared to non-transgenic control chickens. These observations suggest that stable expression of chIFIT5 alone is potentially insufficient in providing sterile protection against these highly virulent viruses; however, it is sufficient to ameliorate the clinical outcome of these RNA viruses. These findings propose the potential of innate immune genes in conferring genetic resistance in chickens against highly pathogenic and zoonotic viral pathogens causing sever disease in both animals and humans

    Interferon-induced protein with tetratricopeptide repeats 5 of black fruit bat (Pteropus alecto) displays a broad inhibition of RNA viruses

    Get PDF
    Bats are natural host reservoirs and have adapted a unique innate immune system that permits them to host many viruses without exhibiting symptoms. Notably, bat interferon stimulated genes (ISGs) have been shown to play antiviral roles. Interferon induced protein with tetratricopeptide repeats 5 (IFIT5) is a well-characterised ISG in humans with antiviral activities against negative-sense RNA viruses via inhibiting viral transcription. Here, we aim to investigate if Pteropus alecto (pa) IFIT5 (paIFIT5) possess the ability to inhibit negative-sense RNA viruses. Initially, gene syntenic and comparative structural analyses of multiple animals highlighted a high level of similarity between Pteropus alecto and human IFIT5 proteins. Our results showed that paIFIT5 was significantly inducible by viral and dsRNA stimulation. Transient overexpression of paIFIT5 inhibited the replication of vesicular stomatitis virus (VSV). Using minireplicon and transcription reporter assays, we demonstrated the ability of paIFIT5 specifically to inhibit H17N10 polymerase activity. Mechanistically, we noticed that the antiviral potential of paIFIT5 against negative sense RNA viruses was retributed to its interaction with 5’ppp containing RNA. Taken together, these findings highlight the genetic and functional conservation of IFIT5 among mammals

    Biological characterization of wild-bird-origin avian avulavirus 1 and efficacy of currently applied vaccines against potential infection in commercial poultry

    Get PDF
    Newcastle disease virus (NDV), the type member of the species Avian avulavirus 1 (formerly known as avian paramyxovirus serotype 1), causes a highly contagious and economically important disease in a myriad of avian species around the globe. While extensive vaccination programs have been implemented in ND-endemic countries, the disease is continuously spreading in commercial, backyard, and wild captive poultry. In order to investigate the evolution of the virus and assess the efficiency of the vaccine regimens that are currently being applied in commercial poultry, four wild-bird-origin NDV strains were characterized biologically, based on mean death time and intracerebral pathogenicity index, and genetically, based on the cleavage motif (112RRQKRF117) in the fusion (F) protein. Based on these features, all of the isolates were characterized as velogenic strains of NDV. Phylogenetic analysis based on the complete genome sequence revealed clustering of these isolates within class II, genotype VII. This class of NDV remains the predominant genotype in the Egyptian poultry industry, as well as in those of many Asian and African countries. To investigate the potential of these wild-bird-origin NDV isolates to cause infection in domesticated poultry and to assess the efficacy of currently available vaccines for protection of commercial poultry, an extensive animal challenge experiment was performed. Cumulative clinicopathological and immunological investigations of virus-challenged chickens indicate that these isolates can potentially be transmitted between chicken and cause systemic infections, and the currently applied vaccines are unable to prevent clinical disease and virus shedding. Taken together, the data represent a comprehensive evaluation of the ability of Egyptian wild-bird-origin NDV strains to cause infection in commercial poultry and highlights the need for a continuous and large-scale surveillance as well as revised vaccine approaches. These integrated and multifaceted strategies would be crucial in any efforts to control and eradicate the disease globally

    Toxic Effects of Trichloroethylene on Rat Neuroprogenitor Cells

    Get PDF
    Trichloroethylene (TCE) is a common volatile organic solvent which is considered as an ubiquitous environmental pollutant. It is claimed to be a developmental neurotoxicant. Our group evaluated previously its impact on three-dimensional neurospheres in vitro. The current work aims to investigate the neurotoxic effects of a lower concentration of TCE on the same system. To perform the experiment, neural progenitor cells were obtained from the brains of nine newborn rats. Afterward, these cells were cultured in both growth and differentiation media to get the neurospheres. Cell cultures were divided into two groups: group 1 (control), group 2 (exposed to 0.25 ÎĽM TCE). Neurospheres were photographed at different durations and assessment of the morphological changes such as proliferation and differentiation of neurospheres was done. In addition, cell viability, apoptosis, and necrosis were analyzed using flow cytometry to clarify the mechanism of involved cytotoxicity. The results revealed that TCE-treated neurospheres showed significantly decreased proliferation on days 7 and 14. These cells failed to show the neurogenic differentiation seen in the neurospheres of the control group. Furthermore, a highly significant decrease in viability and a significant increase in the number of apoptotic cells were observed in the treated cells in comparison to the control group. The present work confirmed that TCE, at very low doses relevant to daily life exposure in humans, caused neurotoxic effects in 3D neurosphere model through the affection of neural proliferation and differentiation as well as disturbance of cell viability and apoptosis

    Evolutionary Trajectories of Avian Avulaviruses and Vaccines Compatibilities in Poultry.

    Get PDF
    Newcastle disease virus (NDV) causes one of the highly infectious avian diseases in poultry leading to genuine financial misfortunes around the world. Recently, there has been an increasing trend in the number of ND-associated outbreaks in commercial Jordanian poultry flocks indicating a possible complex evolutionary dynamic of NDV infections in the country. To underpin the dynamics of circulating NDV strains and to assess the vaccine-escape potential, a total of 130 samples were collected from different poultry flocks in six Jordanian Governorates during 2019-2021. Twenty positive isolates, based on real-time reverse transcriptase PCR, were used for further genetic characterization and evolutionary analysis. Our results showed that there is a high evolutionary distance between the newly identified NDV strains (genotype VII.1.1) in this study and the commercially used vaccines (genotypes I and II), suggesting that circulating NDV field strains are under constant evolutionary pressure. These mutations may significantly affect flocks that have received vaccinations as well as flocks with insufficient immunity in terms of viral immunity and disease dynamics. To assess this further, we investigated the efficacy of the heterologous inactivated LaSota or homologous genotype VII.1.1 vaccine for their protection against virulent NDV in chicken. Vaccine-induced immunity was evaluated based on the serology, and protection efficacy was assessed based on clinical signs, survival rates, histopathology, and viral shedding. Chickens vaccinated with the inactivated genotype VII.1.1 based vaccine showed 100% protection with a significant reduction in virus shedding, and ameliorated histopathology lesions compared to LaSota vaccinated chicks that showed 60% protection. These results revealed that the usage of NDV inactivated vaccine from the circulating field strains can successfully ameliorate the clinical outcome and virus pathobiology in vaccinated chicks and will serve as an effective vaccine against the threat posed by commonly circulating NDV strains in the poultry industry

    Chickens Expressing IFIT5 Ameliorate Clinical Outcome and Pathology of Highly Pathogenic Avian Influenza and Velogenic Newcastle Disease Viruses

    Get PDF
    Innate antiviral immunity establishes first line of defense against invading pathogens through sensing their molecular structures such as viral RNA. This antiviral potential of innate immunity is mainly attributed to a myriad of IFN-stimulated genes (ISGs). Amongst well-characterized ISGs, we have previously shown that antiviral potential of chicken IFN-induced proteins with tetratricopeptides repeats 5 (chIFIT5) is determined by its interaction potential with 5′ppp containing viral RNA. Here, we generated transgenic chickens using avian sarcoma-leukosis virus (RCAS)-based gene transfer system that constitutively and stably express chIFIT5. The transgenic chickens infected with clinical dose (EID50 104 for HPAIV and 105 EID50 for vNDV) of high pathogenicity avian influenza virus (HPAIV; H5N1) or velogenic strain of Newcastle disease virus (vNDV; Genotype VII) showed marked resistance against infections. While transgenic chickens failed to sustain a lethal dose of these viruses (EID50 105 for HPAIV and 106 EID50 for vNDV), a delayed and lower level of clinical disease and mortality, reduced virus shedding and tissue damage was observed compared to non-transgenic control chickens. These observations suggest that stable expression of chIFIT5 alone is potentially insufficient in providing sterile protection against these highly virulent viruses; however, it is sufficient to ameliorate the clinical outcome of these RNA viruses. These findings propose the potential of innate immune genes in conferring genetic resistance in chickens against highly pathogenic and zoonotic viral pathogens causing sever disease in both animals and humans

    Antiviral Nanomedicine‑Based Approaches against Epstein‑Barr Virus Infection

    Get PDF
    Purpose of Review The Epstein-Barr virus (EBV) is a common virus around the globe with approximately 98% of adults testing positive against EBV. However, EBV infection typically begins early in the childhood. Owing to the ability to infect various body organ, EBV is linked to a broad spectrum of symptoms, diseases, and inflammatory conditions. Moreover, since EBV exists in both latent and replicating forms in most healthy individuals, any disruption in the balance between the virus and its host can lead to the development of different diseases, including autoimmune disorders and cancer. Given these circumstances, we draw attention to the crucial need for developing prophylactic measures and treatments for EBV and its associated diseases. Recent Findings We propose leveraging the advantages of nanomedicine, such as ferritin and iron oxide nanoparticles, for the creation of EBV vaccines. These advancements can also be applied to developing drugs to treat EBV-associated diseases, such as cancer, autoimmune disorders, and cytokine storm syndrome. Summary We emphasize the urgency of having accessible EBV vaccines, as well as effective treatments for EBV-related diseases, especially when early diagnosis is involved. This approach, which includes comprehensive cytokine profiling for patients, can significantly enhance the effectiveness of treatment programs
    corecore