4 research outputs found

    Deep Learning for Time Series Classification of Parkinson's Disease Eye Tracking Data

    Full text link
    Eye-tracking is an accessible and non-invasive technology that provides information about a subject's motor and cognitive abilities. As such, it has proven to be a valuable resource in the study of neurodegenerative diseases such as Parkinson's disease. Saccade experiments, in particular, have proven useful in the diagnosis and staging of Parkinson's disease. However, to date, no single eye-movement biomarker has been found to conclusively differentiate patients from healthy controls. In the present work, we investigate the use of state-of-the-art deep learning algorithms to perform Parkinson's disease classification using eye-tracking data from saccade experiments. In contrast to previous work, instead of using hand-crafted features from the saccades, we use raw 1.5s\sim1.5\,s long fixation intervals recorded during the preparatory phase before each trial. Using these short time series as input we implement two different classification models, InceptionTime and ROCKET. We find that the models are able to learn the classification task and generalize to unseen subjects. InceptionTime achieves 78%78\% accuracy, while ROCKET achieves 88%88\% accuracy. We also employ a novel method for pruning the ROCKET model to improve interpretability and generalizability, achieving an accuracy of 96%96\%. Our results suggest that fixation data has low inter-subject variability and potentially carries useful information about brain cognitive and motor conditions, making it suitable for use with machine learning in the discovery of disease-relevant biomarkers.Comment: Extended Abstract presented at Machine Learning for Health (ML4H) symposium 2023, December 10th, 2023, New Orleans, United States, 12 page

    Flerskalig Uppgiftsdynamik vid Överförings- och Multiuppgiftsinlärning : Mot Effektiv Perception för Självkörande Fordon

    No full text
    Autonomous driving technology has the potential to revolutionize the way we think about transportation and its impact on society. Perceiving the environment is a key aspect of autonomous driving, which involves multiple computer vision tasks. Multi-scale deep learning has dramatically improved the performance on many computer vision tasks, but its practical use in autonomous driving is limited by the available resources in embedded systems. Multi-task learning offers a solution to this problem by allowing more compact deep learning models that share parameters between tasks. However, not all tasks benefit from being learned together. One way of avoiding task interference during training is to learn tasks in sequence, with each task providing useful information for the next – a scheme which builds on transfer learning. Multi-task and transfer dynamics are both concerned with the relationships between tasks, but have previously only been studied separately. This Master’s thesis investigates how different computer vision tasks relate to each other in the context of multi-task and transfer learning, using a state-ofthe-art efficient multi-scale deep learning model. Through an experimental research methodology, the performance on semantic segmentation, depth estimation, and object detection were evaluated on the Virtual KITTI 2 dataset in a multi-task and transfer learning setting. In addition, transfer learning with a frozen encoder was compared to constrained encoder fine tuning, to uncover the effects of fine-tuning on task dynamics. The results suggest that findings from previous work regarding semantic segmentation and depth estimation in multi-task learning generalize to multi-scale learning on autonomous driving data. Further, no statistically significant correlation was found between multitask learning dynamics and transfer learning dynamics. An analysis of the results from transfer learning indicate that some tasks might be more sensitive to fine-tuning than others, suggesting that transferring with a frozen encoder only captures a subset of the complexities involved in transfer relationships. Regarding object detection, it is observed to negatively impact the performance on other tasks during multi-task learning, but might be a valuable task to transfer from due to lower annotation costs. Possible avenues for future work include applying the used methodology to real-world datasets and exploring ways of utilizing the presented findings for more efficient perception algorithms.Självkörande teknik har potential att revolutionera transport och dess påverkan på samhället. Självkörning medför ett flertal uppgifter inom datorseende, som bäst löses med djupa neurala nätverk som lär sig att tolka bilder på flera olika skalor. Begränsningar i mobil hårdvara kräver dock att tekniker som multiuppgifts- och sekventiell inlärning används för att minska neurala nätverkets fotavtryck, där sekventiell inlärning bygger på överföringsinlärning. Dynamiken bakom både multiuppgiftsinlärning och överföringsinlärning kan till stor del krediteras relationen mellan olika uppdrag. Tidigare studier har dock bara undersökt dessa dynamiker var för sig. Detta examensarbete undersöker relationen mellan olika uppdrag inom datorseende från perspektivet av både multiuppgifts- och överföringsinlärning. En experimentell forskningsmetodik användes för att jämföra och undersöka tre uppgifter inom datorseende på datasetet Virtual KITTI 2. Resultaten stärker tidigare forskning och föreslår att tidigare fynd kan generaliseras till flerskaliga nätverk och data för självkörning. Resultaten visar inte på någon signifikant korrelation mellan multiuppgift- och överföringsdynamik. Slutligen antyder resultaten att vissa uppgiftspar ställer högre krav än andra på att nätverket anpassas efter överföring

    Flerskalig Uppgiftsdynamik vid Överförings- och Multiuppgiftsinlärning : Mot Effektiv Perception för Självkörande Fordon

    No full text
    Autonomous driving technology has the potential to revolutionize the way we think about transportation and its impact on society. Perceiving the environment is a key aspect of autonomous driving, which involves multiple computer vision tasks. Multi-scale deep learning has dramatically improved the performance on many computer vision tasks, but its practical use in autonomous driving is limited by the available resources in embedded systems. Multi-task learning offers a solution to this problem by allowing more compact deep learning models that share parameters between tasks. However, not all tasks benefit from being learned together. One way of avoiding task interference during training is to learn tasks in sequence, with each task providing useful information for the next – a scheme which builds on transfer learning. Multi-task and transfer dynamics are both concerned with the relationships between tasks, but have previously only been studied separately. This Master’s thesis investigates how different computer vision tasks relate to each other in the context of multi-task and transfer learning, using a state-ofthe-art efficient multi-scale deep learning model. Through an experimental research methodology, the performance on semantic segmentation, depth estimation, and object detection were evaluated on the Virtual KITTI 2 dataset in a multi-task and transfer learning setting. In addition, transfer learning with a frozen encoder was compared to constrained encoder fine tuning, to uncover the effects of fine-tuning on task dynamics. The results suggest that findings from previous work regarding semantic segmentation and depth estimation in multi-task learning generalize to multi-scale learning on autonomous driving data. Further, no statistically significant correlation was found between multitask learning dynamics and transfer learning dynamics. An analysis of the results from transfer learning indicate that some tasks might be more sensitive to fine-tuning than others, suggesting that transferring with a frozen encoder only captures a subset of the complexities involved in transfer relationships. Regarding object detection, it is observed to negatively impact the performance on other tasks during multi-task learning, but might be a valuable task to transfer from due to lower annotation costs. Possible avenues for future work include applying the used methodology to real-world datasets and exploring ways of utilizing the presented findings for more efficient perception algorithms.Självkörande teknik har potential att revolutionera transport och dess påverkan på samhället. Självkörning medför ett flertal uppgifter inom datorseende, som bäst löses med djupa neurala nätverk som lär sig att tolka bilder på flera olika skalor. Begränsningar i mobil hårdvara kräver dock att tekniker som multiuppgifts- och sekventiell inlärning används för att minska neurala nätverkets fotavtryck, där sekventiell inlärning bygger på överföringsinlärning. Dynamiken bakom både multiuppgiftsinlärning och överföringsinlärning kan till stor del krediteras relationen mellan olika uppdrag. Tidigare studier har dock bara undersökt dessa dynamiker var för sig. Detta examensarbete undersöker relationen mellan olika uppdrag inom datorseende från perspektivet av både multiuppgifts- och överföringsinlärning. En experimentell forskningsmetodik användes för att jämföra och undersöka tre uppgifter inom datorseende på datasetet Virtual KITTI 2. Resultaten stärker tidigare forskning och föreslår att tidigare fynd kan generaliseras till flerskaliga nätverk och data för självkörning. Resultaten visar inte på någon signifikant korrelation mellan multiuppgift- och överföringsdynamik. Slutligen antyder resultaten att vissa uppgiftspar ställer högre krav än andra på att nätverket anpassas efter överföring

    The Impact of Gesture Navigation on Mobile Usage

    No full text
    The modern attention economy incentivizes the use of persuasive designs in software development. Scrolling is an interaction technique commonly associated with persuasive designs because of its lack of natural stopping cues and potential for habit promotion. A scroll-like interaction is used in gesture navigation, which is a method of navigating mobile operating systems. This paper investigates gesture navigation in mobile operating systems in the context of persuasive designs. The aim of this paper is to answer whether gesture navigation affects mobile usage and if there is a systematic preference for gesture navigation over traditional button navigation. In order to answer these questions a pre-post study was conducted. The participants were instructed to change system navigation controls for ten days; whereafter data regarding their mobile usage was collected. The collected data was analyzed in order to determine if there was a difference in mobile usage after changing system navigation controls and whether there was a systematic preference for gesture navigation. The results did not suggest that gesture navigation has an effect on mobile usage. The results did however point towards a systematic preference for gesture navigation over button navigation. The idéa of a systematic preference for gesture navigation motivates further research about the mechanisms behind it. Den moderna uppmärksamhets-ekonomin motiverar implementering av persuasive design-tekniker inom mjukvaruutveckling. Scrolling är en interaktionsteknik som ofta förknippas med persuasive design på grund av dess brist på naturliga stoppsignaler och förmåga att forma användarvanor. En scrolling-liknande interaktion används i gestnavigering, vilket är en navigeringsmetod i mobila operativsystem. Denna uppsats undersöker gestnavigering i mobila operativsystem i anknytning till persuasive design. Syftet med uppsatsen är att besvara om gestnavigering påverkar mobilanvändning och om det finns en systematisk preferens för gestnavigering framför traditionell knappnavigering. För att besvara dessa frågor genomfördes en inventionsstudie. Deltagarna instruerades att ändra systemnavigering i tio dagar; varefter data om deras mobilanvändning samlades in. De insamlade uppgifterna analyserades för att avgöra om det förekom någon skillnad på mobilanvändandet efter bytet av systemnavigering och om det fanns en systematisk preferens för gestnavigering. Resultaten tydde inte på att gestnavigering påverkar mobilanvändning. Resultaten pekade däremot på en systematisk preferens för gestnavigering framför knappnavigering. Idén om en systematisk preferens för gestnavigering motiverar vidare forskning om preferensens bakomliggande mekanismer
    corecore