4,569 research outputs found

    "Income Distribution in a Monetary Economy: A Ricardo-Keynes Synthesis"

    Get PDF
    The paper provides a novel theory of income distribution and achieves an integration of monetary and value theories along Ricardian lines, extended to a monetary production economy as understood by Keynes. In a monetary economy, capital is a fund that must be maintained. This idea is captured in the circuit of capital as first defined by Marx. We introduce the circuit of fixed capital; this circuit is closed when the present value of prospective returns from employing it is equal to its supply price. In a steady-growth equilibrium with nominal wages and interest rates given, the equation that closes the circuit of fixed capital can be solved for prices, implying a definitive income distribution. Accordingly, the imputation for fixed capital costs is equivalent to that of a money contract of equal length, which is the payment per period that will repay the cost of the fixed asset, together with interest. It follows that if capital assets remain in use for a period longer than is required to amortize them, their earnings beyond that period have an element of pure rent.Income Distribution; Circuits of Capital; Monetary Economy

    Nanoelectromechanical systems

    Get PDF
    Nanoelectromechanical systems (NEMS) are drawing interest from both technical and scientific communities. These are electromechanical systems, much like microelectromechanical systems, mostly operated in their resonant modes with dimensions in the deep submicron. In this size regime, they come with extremely high fundamental resonance frequencies, diminished active masses,and tolerable force constants; the quality (Q) factors of resonance are in the range Q~10^3–10^5—significantly higher than those of electrical resonant circuits. These attributes collectively make NEMS suitable for a multitude of technological applications such as ultrafast sensors, actuators, and signal processing components. Experimentally, NEMS are expected to open up investigations of phonon mediated mechanical processes and of the quantum behavior of mesoscopic mechanical systems. However, there still exist fundamental and technological challenges to NEMS optimization. In this review we shall provide a balanced introduction to NEMS by discussing the prospects and challenges in this rapidly developing field and outline an exciting emerging application, nanoelectromechanical mass detection

    Generalized Knudsen number for unsteady fluid flow

    Full text link
    We explore the scaling behavior of an unsteady flow that is generated by an oscillating body of finite size in a gas. If the gas is gradually rarefied, the Navier-Stokes equations begin to fail and a kinetic description of the flow becomes more appropriate. The failure of the Navier-Stokes equations can be thought to take place via two different physical mechanisms: either the continuum hypothesis breaks down as a result of a finite size effect or local equilibrium is violated due to the high rate of strain. By independently tuning the relevant linear dimension and the frequency of the oscillating body, we can experimentally observe these two different physical mechanisms. All the experimental data, however, can be collapsed using a single dimensionless scaling parameter that combines the relevant linear dimension and the frequency of the body. This proposed Knudsen number for an unsteady flow is rooted in a fundamental symmetry principle, namely, Galilean invariance

    Some New Integral Inequalities for Several Kinds of Convex Functions

    Full text link
    In this study, we obtain some new integral inequalities for different classes of convex functions by using some elementary inequalities and classical inequalities like general Cauchy inequality and Minkowski inequality

    Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems

    Get PDF
    Nanomechanical resonators can now be realized that achieve fundamental resonance frequencies exceeding 1 GHz, with quality factors (Q) in the range 10^3<=Q<=10^5. The minuscule active masses of these devices, in conjunction with their high Qs, translate into unprecedented inertial mass sensitivities. This makes them natural candidates for a variety of mass sensing applications. Here we evaluate the ultimate mass sensitivity limits for nanomechanical resonators operating in vacuo that are imposed by a number of fundamental physical noise processes. Our analyses indicate that nanomechanical resonators offer immense potential for mass sensing—ultimately with resolution at the level of individual molecules
    corecore