5 research outputs found

    Bedeutung und Anwendung

    No full text
    Title Page, Table of Contents, Motivation iv Concepts v Introduction vii 1 Fundamentals 1 1.1 Meaning of isostasy and rigidity 1 1.1.1 Isostasy according to Pratt 1 1.1.2 Isostasy according to Airy 2 1.1.3 Isostasy according to Vening-Meinesz 2 1.1.4 Elastic thickness and flexural rigidity 4 1.2 Methods for estimation of flexural parameters 5 1.2.1 Spectral methods 5 1.2.2 Advantage and disadvantage of spectral methods 10 1.2.3 Convolution method 11 1.2.4 Advantage and disadvantage of the convolution method 12 1.2.5 Conclusion 12 1.3 Gravity inversion according to Parker algorithm 13 1.3.1 Introduction 13 1.3.2 Method 13 1.3.3 Synthetic example 14 1.4 Internal loads 16 1.4.1 Calculation of gravity effect of sediments with slice program 16 1.4.2 Pseudo topography 17 2 Theoretical basics and development of the analytical solution 19 2.1 Differential equation 19 2.1.1 Plate theory according to Kirchhoff 19 2.1.2 Beam on elastic foundation 20 2.1.3 Application in geological sciences 23 2.2 Formula according to Hertz 25 2.2.1 Investigation of the Logarithm function 27 2.2.2 Investigation of the Sine function 29 2.2.3 Summary of the behavior of the functions 30 2.3 New analytical solution 31 2.3.1 Introduction 31 2.3.2 Modification and substitution 31 2.3.3 Investigation of the graph 33 2.3.4 Unification of the analytical solution 35 2.4 Transfer function 38 2.4.1 Introduction 38 2.4.2 Transfer function 39 2.4.3 Verification of the analytical solution 41 2.4.4 Conclusion. 42 2.5 Comparison with FFT solution 43 2.5.1 Comparison with flexure curves 43 2.5.2 Investigation of dependence from grid parameters 44 2.5.3 Boundary cases for elastic thickness 47 2.5.4 Comparison with Vening-Meinesz solution 49 2.5.5 Conclusion 50 2.6 Software concept 51 2.6.1 Introduction 51 2.6.2 Flexure curves and CMI 52 2.6.3 Radius of convolution 52 2.6.4 Iterative estimation of elastic thickness 54 2.6.5 Elastic thickness distribution 56 2.6.6 Reference depth 57 2.7 Comparison with Finite Element modeling 59 2.7.1 Influence of input parameters 61 2.7.2 Conclusion 69 3\. Application of the analytical solution 70 3.1 Pacific Ocean 71 3.1.1 Input data 71 3.1.2 Preliminary investigations 72 3.1.3 Estimation of gravity CMI 73 3.1.4 Estimation of rigidity And elastic thickness 76 3.1.5 Discussion and conclusion. 77 3.2 Central Andes 80 3.2.1 Input data 80 3.2.2 Preliminary investigation 82 3.2.3 Estimation of rigidity and elastic thickness 83 3.2.4 Discussion and conclusion. 86 3.3 Southern Andes 91 3.3.1 Input data 91 3.3.2 Estimation of rigidity and elastic thickness 92 3.3.3 Discussion and conclusion. 93 4 Discussion of results 98 4.1 Thick plate theory 98 4.2 Influence of temperature 99 4.2.1 Introduction 99 4.2.2 Synthetic example 99 4.2.3 Application in geological sciences 101 4.3 Significance of input parameters 105 4.3.1 Deviation of height 106 4.3.2 Deviation of gravity 107 4.3.3 Deviation of Young's modulus 107 4.3.4 Deviation of Poisson ratio 108 4.3.5 Deviation of density of crust 109 4.3.6 Deviation of density of mantle 109 4.3.7 Deviation of elastic thickness 110 4.3.8 Conclusion 111 4.4 Variation of Young's modulus 112 4.5 Visco-elastic behavior 116 4.6 Final comments and future directions 122 5 Appendix I 5.1 Density-porosity formula I 5.2 Comparison of flexure curves III 5.2.1. FFT solution compared with Logarithm and Sine function III 5.2.2. Comparison of output from computer program with FFT IV 5.3 FE models V 5.3.1. Calculation input parameters and results VI 5.3.2. Settings of the FE models IX Acknowledgement, References X Notation XI Abbreviations XIV Index of Tables XV Index of Figures XVI ReferencesIn 1939 a new concept was introduced by Vening-Meinesz proposing that the flexural strength of the lithosphere must be considered for isostatic models. A 4th order differential equation describing the flexure of a thin plate was developed. In the past the equation has been solved in frequency space using spectral methods (coherence and admittance). However, the admittance and coherence techniques have been questioned when applied to continental lithosphere. Both methods require an averaging process; therefore the variation in rigidity may be retrieved only to a limited extent. A large spatial window with a side length of at least 375 km is required over the study area. And, in where the input topography is characterized by low topographic variation, the method becomes unstable. These problems can be overcome by calculating the flexural rigidity with the convolution approach and furthermore with the use of a newly derived analytical solution of the differential equation mentioned above. This solution was developed out of three solutions from Hertz and has been made applicable to geological science. The analytical solution has been applied to both oceanic lithosphere (Nazca plate) and continental lithosphere (Central and Patagonian Andes). The resulting flexural rigidity values and their variations have been compared with the ideas and concepts developed by the members of the SFB267 community, and correlate well with tectonic units and fault systems. In the past the elastic thickness has been used synonymously for the flexural rigidity. However, the analytical solution leads to a new interpretation and meaning of the elastic thickness. It is shown that it is sufficient to operate with a constant value for both gravity and Poisson's ratio, as the variation of either parameter does not lead to a significant change in the distribution of flexural rigidity. Young's modulus is shown to be the driving factor for the flexural deformation. A temperature moment must also be taken into account in flexural investigations. Thus, the variation of the elastic thickness can be explained by temperature distribution and a change of the Young's modulus. A new definition of elastic thickness can be obtained: the value of the calculated elastic thickness is equivalent to the value of thickness of a corresponding plate described by a constant Young's modulus. Computations using the differential equation are valid for the crust/mantle interface (Moho) as well as the lithosphere/ asthenosphere boundary. The calculated boundary surface can be shifted at the position of the boundary at which a significant change of Young's modulus takes place.Im Jahre 1939 wurde von Vening-Meinesz eine Theorie entwickelt, welche die RigiditĂ€t der LithosphĂ€renplatte innerhalb isostatischer Betrachtungen berĂŒcksichtigte. Dazu wurde eine Differentialgleichung 4. Ordnung verwendet, welche die Deformation einer dĂŒnnen Platte beschreibt. In der Vergangenheit wurde die Gleichung mittels der Spektralmethoden im Frequenz-Bereich gelöst. Aber bezĂŒglich der Anwendung der KohĂ€renz- und Admittanzmethode auf die Kontinente wurde ihre NĂŒtzlichkeit aufgrund der Nachteile, welche durch den Spektralansatz entstehen, in Frage gestellt. Dieser Ansatz bedingt eine Durchschnittsbildung, welche im Falle einer sich rĂ€umlich stark variierenden RigiditĂ€t dazu fĂŒhren kann, dass jene Variation nur bis zu einem begrenzten Mabe aufgelöst wird. FĂŒr das Untersuchungsgebiet ist eine SeitenlĂ€nge von mindestens erforderlich. Ein weiteres Problem tritt im Falle niedriger Topographie auf, da kleinere Spektralwerte zu Instabilitaeten innerhalb der Anwendung fĂŒhren können. Durch die Verwendung der Konvolutionsmethode und der neu entwickelten analytischen Lösung der obig eingefĂŒhrten Differentialgleichung werden diese Nachteile ĂŒberwunden. Diese analytische Lösung wurde aus drei verschiedenen Lösungen nach Hertz entwickelt und fĂŒr die geologischen Wissenschaften anwendbar gemacht. Die analytische Lösung wurde auf die ozeanische LithosphĂ€re im Bereich des Pazifik (Nazca-Platte) und auf die kontinentale LithosphĂ€re im Bereich der Zentral - und der Patagonischen Anden angewendet. Die resultierende RigiditĂ€tsverteilung wird mit den von den Mitgliedern der SFB267 Gemeinschaft entwickelten Ideen und Konzepten verglichen, und ist durch eine gute Korrelation mit den tektonischen Einheiten und Störungssystemen charakterisiert. Bisher wurde die elastische Dicke und die flexurelle RigiditĂ€t synonym verwendet. Aber die analytische Lösung fĂŒhrte zu einem neuen VerstĂ€ndnis und Interpretation der elastischen Dicke. In Anbetracht der Untersuchungen zur Signifikanz der Inputparameter ist es zulĂ€ssig mit einem konstanten Wert fĂŒr die Schwere und dem Poisson-VerhĂ€ltnis zu arbeiten, denn dies wird nicht zu signifikanten Unterschieden im Ergebnis fĂŒhren. Dies gilt nicht fĂŒr das ElastizitĂ€tsmodul, denn dieser Parameter ist ein entscheidender Faktor fĂŒr das Deformationsverhalten. Daher kann die elastische Dicke auch als Ă€quivalente Plattendicke fĂŒr eine Platte konstanten ElastizitĂ€tsmoduls definiert werden. Zudem wurde herausgefunden, daß das Temperaturmoment in den weiteren Untersuchungen mit berĂŒcksichtigt werden muss. Damit kann die beobachtete Variation der elastischen Dicke durch die Temperaturverteilung und die VerĂ€nderung des ElastizitĂ€tsmoduls erklĂ€rt werden. ZusĂ€tzlich wurde gezeigt, daß die Berechnungen mittels der Differentialgleichung und der analytischen Lösung sowohl fĂŒr die Krusten/Mantel Grenze als auch die LithosphĂ€ren/AsthenosphĂ€ren Grenze gĂŒltig sind. Dabei ist entscheidend, an welcher GrenzflĂ€che sich das ElastizitĂ€tsmodul Ă€ndert
    corecore