229 research outputs found
Self-force on a scalar charge in radial infall from rest using the Hadamard-WKB expansion
We present an analytic method based on the Hadamard-WKB expansion to
calculate the self-force for a particle with scalar charge that undergoes
radial infall in a Schwarzschild spacetime after being held at rest until a
time t = 0. Our result is valid in the case of short duration from the start.
It is possible to use the Hadamard-WKB expansion in this case because the value
of the integral of the retarded Green's function over the particle's entire
past trajectory can be expressed in terms of two integrals over the time period
that the particle has been falling. This analytic result is expected to be
useful as a check for numerical prescriptions including those involving mode
sum regularization and for any other analytical approximations to self-force
calculations.Comment: 22 pages, 2 figures, Physical Review D version along with the
corrections given in the erratu
Clustering on very small scales from a large sample of confirmed quasar pairs: Does quasar clustering track from Mpc to kpc scales?
We present the most precise estimate to date of the clustering of quasars on
very small scales, based on a sample of 47 binary quasars with magnitudes of
and proper transverse separations of \,kpc. Our
sample of binary quasars, which is about 6 times larger than any previous
spectroscopically confirmed sample on these scales, is targeted using a Kernel
Density Estimation technique (KDE) applied to Sloan Digital Sky Survey (SDSS)
imaging over most of the SDSS area. Our sample is "complete" in that all of the
KDE target pairs with \,kpc in our area
of interest have been spectroscopically confirmed from a combination of
previous surveys and our own long-slit observational campaign. We catalogue 230
candidate quasar pairs with angular separations of <8\arcsec, from which our
binary quasars were identified. We determine the projected correlation function
of quasars () in four bins of proper transverse scale over the
range \,kpc. The implied small-scale
quasar clustering amplitude from the projected correlation function, integrated
across our entire redshift range, is at \,kpc. Our sample is the first spectroscopically confirmed sample of
quasar pairs that is sufficiently large to study how quasar clustering evolves
with redshift at kpc. We find that empirical descriptions of
how quasar clustering evolves with redshift at Mpc also
adequately describe the evolution of quasar clustering at
kpc.Comment: 16 pages, 8 figures, 6 tables, Accepted for publication in MNRA
Remarks on the Formulation of Quantum Mechanics on Noncommutative Phase Spaces
We consider the probabilistic description of nonrelativistic, spinless
one-particle classical mechanics, and immerse the particle in a deformed
noncommutative phase space in which position coordinates do not commute among
themselves and also with canonically conjugate momenta. With a postulated
normalized distribution function in the quantum domain, the square of the Dirac
delta density distribution in the classical case is properly realised in
noncommutative phase space and it serves as the quantum condition. With only
these inputs, we pull out the entire formalisms of noncommutative quantum
mechanics in phase space and in Hilbert space, and elegantly establish the link
between classical and quantum formalisms and between Hilbert space and phase
space formalisms of noncommutative quantum mechanics. Also, we show that the
distribution function in this case possesses 'twisted' Galilean symmetry.Comment: 25 pages, JHEP3 style; minor changes; Published in JHE
The Sloan Digital Sky Survey Reverberation Mapping Project: Technical Overview
The Sloan Digital Sky Survey Reverberation Mapping project (SDSS-RM) is a
dedicated multi-object RM experiment that has spectroscopically monitored a
sample of 849 broad-line quasars in a single 7 deg field with the SDSS-III
BOSS spectrograph. The RM quasar sample is flux-limited to i_psf=21.7 mag, and
covers a redshift range of 0.1<z<4.5. Optical spectroscopy was performed during
2014 Jan-Jul dark/grey time, with an average cadence of ~4 days, totaling more
than 30 epochs. Supporting photometric monitoring in the g and i bands was
conducted at multiple facilities including the CFHT and the Steward Observatory
Bok telescopes in 2014, with a cadence of ~2 days and covering all lunar
phases. The RM field (RA, DEC=14:14:49.00, +53:05:00.0) lies within the CFHT-LS
W3 field, and coincides with the Pan-STARRS 1 (PS1) Medium Deep Field MD07,
with three prior years of multi-band PS1 light curves. The SDSS-RM 6-month
baseline program aims to detect time lags between the quasar continuum and
broad line region (BLR) variability on timescales of up to several months (in
the observed frame) for ~10% of the sample, and to anchor the time baseline for
continued monitoring in the future to detect lags on longer timescales and at
higher redshift. SDSS-RM is the first major program to systematically explore
the potential of RM for broad-line quasars at z>0.3, and will investigate the
prospects of RM with all major broad lines covered in optical spectroscopy.
SDSS-RM will provide guidance on future multi-object RM campaigns on larger
scales, and is aiming to deliver more than tens of BLR lag detections for a
homogeneous sample of quasars. We describe the motivation, design and
implementation of this program, and outline the science impact expected from
the resulting data for RM and general quasar science.Comment: 25 pages, submitted to ApJS; project website at http://www.sdssrm.or
The Circumgalactic Medium in Massive Halos
This chapter presents a review of the current state of knowledge on the cool
(T ~ 1e4 K) halo gas content around massive galaxies at z ~ 0.2-2. Over the
last decade, significant progress has been made in characterizing the cool
circumgalactic gas in massive halos of Mh ~ 1e12-1e14 Msun at intermediate
redshifts using absorption spectroscopy. Systematic studies of halo gas around
massive galaxies beyond the nearby universe are made possible by large
spectroscopic samples of galaxies and quasars in public archives. In addition
to accurate and precise constraints for the incidence of cool gas in massive
halos, detailed characterizations of gas kinematics and chemical compositions
around massive quiescent galaxies at z ~ 0.5 have also been obtained. Combining
all available measurements shows that infalling clouds from external sources
are likely the primary source of cool gas detected at d >~ 100 kpc from massive
quiescent galaxies. The origin of the gas closer in is currently less certain,
but SNe Ia driven winds appear to contribute significantly to cool gas found at
d < 100 kpc. In contrast, cool gas observed at d <~ 200 kpc from luminous
quasars appears to be intimately connected to quasar activities on parsec
scales. The observed strong correlation between cool gas covering fraction in
quasar host halos and quasar bolometric luminosity remains a puzzle. Combining
absorption-line studies with spatially-resolved emission measurements of both
gas and galaxies is the necessary next step to address remaining questions.Comment: 29 pages, 7 figures, invited review to appear in "Gas Accretion onto
Galaxies", Astrophysics and Space Science Library, eds. A. Fox & R. Dave, to
be published by Springe
Detecting and Characterizing Mg ii Absorption in DESI Survey Validation Quasar Spectra
We present findings of the detection of Magnesium II (Mg ii, λ = 2796, 2803 Å) absorbers from the early data release of the Dark Energy Spectroscopic Instrument (DESI). DESI is projected to obtain spectroscopy of approximately 3 million quasars (QSOs), of which over 99% are anticipated to be at redshifts greater than z > 0.3, such that DESI would be able to observe an associated or intervening Mg ii absorber illuminated by the background QSO. We have developed an autonomous supplementary spectral pipeline that detects these systems through an initial line-fitting process and then confirms the line properties using a Markov Chain Monte Carlo sampler. Based upon a visual inspection of the resulting systems, we estimate that this sample has a purity greater than 99%. We have also investigated the completeness of our sample in regard to both the signal-to-noise properties of the input spectra and the rest-frame equivalent width (W 0) of the absorber systems. From a parent catalog containing 83,207 quasars, we detect a total of 23,921 Mg ii absorption systems following a series of quality cuts. Extrapolating from this occurrence rate of 28.8% implies a catalog at the completion of the five-year DESI survey that will contain over eight hundred thousand Mg ii absorbers. The cataloging of these systems will enable significant further research because they carry information regarding circumgalactic medium environments, the distribution of intervening galaxies, and the growth of metallicity across the redshift range 0.3 ≤ z < 2.5
Reverberation Mapping of Optical Emission Lines in Five Active Galaxies
We present the first results from an optical reverberation mapping campaign executed in 2014 targeting the active galactic nuclei (AGNs) MCG+08-11-011, NGC 2617, NGC 4051, 3C 382, and Mrk 374. Our targets have diverse and interesting observational properties, including a changing look AGN and a broad-line radio galaxy. Based on continuum-Hβ lags, we measure black hole masses for all five targets. We also obtain Hγ and He ii λ4686 lags for all objects except 3C 382. The He ii λ4686 lags indicate radial stratification of the BLR, and the masses derived from different emission lines are in general agreement. The relative responsivities of these lines are also in qualitative agreement with photoionization models. These spectra have extremely high signal-to-noise ratios (100-300 per pixel) and there are excellent prospects for obtaining velocity-resolved reverberation signatures
Continuum Reverberation Mapping of the Accretion Disks in Two Seyfert 1 Galaxies
We present optical continuum lags for two Seyfert 1 galaxies, MCG+08-11-011 and NGC 2617, using monitoring data from a reverberation mapping campaign carried out in 2014. Our light curves span the ugriz filters over four months, with median cadences of 1.0 and 0.6 days for MCG+08-11-011 and NGC 2617, respectively, combined with roughly daily X-ray and near-UV data from Swift for NGC 2617. We find lags consistent with geometrically thin accretion-disk models that predict a lag-wavelength relation of τ ∝ λ 4/3. However, the observed lags are larger than predictions based on standard thin-disk theory by factors of 3.3 for MCG+08-11-011 and 2.3 for NGC 2617. These differences can be explained if the mass accretion rates are larger than inferred from the optical luminosity by a factor of 4.3 in MCG+08-11-011 and a factor of 1.3 in NGC 2617, although uncertainty in the SMBH masses determines the significance of this result. While the X-ray variability in NGC 2617 precedes the UV/optical variability, the long (2.6 day) lag is problematic for coronal reprocessing models
- …