2,127 research outputs found

    Dimer-atom scattering between two identical fermions and a third particle

    Full text link
    We use the diagrammatic TT-matrix approach to analyze the three-body scattering problem between two identical fermions and a third particle (which could be a different species of fermion or a boson). We calculate the s-wave dimer-atom scattering length for all mass ratios, and our results exactly match the results of Petrov. In particular, we list the exact dimer-atom scattering lengths for all available two-species Fermi-Fermi and Bose-Fermi mixtures. In addition, unlike that of the equal-mass particles case where the three-body scattering TT-matrix decays monotonically as a function of the outgoing momentum, we show that, after an initial rapid drop, this function changes sign and becomes negative at large momenta and then decays slowly to zero when the mass ratio of the fermions to the third particle is higher than a critical value (around 6.5). As the mass ratio gets higher, modulations of the TT-matrix become more apparent with multiple sign changes, related to the "fall of a particle to the center" phenomenon and to the emergence of three-body Efimov bound states.Comment: 6 pages, 3 figures, and 2 table

    Three-boson problem near a narrow Feshbach resonance

    Full text link
    We consider a three-boson system with resonant binary interactions and show that three-body observables depend only on the resonance width and the scattering length. The effect of narrow resonances is qualitatively different from that of wide resonances revealing novel physics of three-body collisions. We calculate the rate of three-body recombination to a weakly bound level and the atom-dimer scattering length and discuss implications for experiments on Bose-Einstein condensates and atom-molecule mixtures near Feshbach resonances.Comment: published versio

    Range Corrections to Three-Body Observables near a Feshbach Resonance

    Full text link
    A non-relativistic system of three identical particles will display a rich set of universal features known as Efimov physics if the scattering length a is much larger than the range l of the underlying two-body interaction. An appropriate effective theory facilitates the derivation of both results in the |a| goes to infinity limit and finite-l/a corrections to observables of interest. Here we use such an effective-theory treatment to consider the impact of corrections linear in the two-body effective range, r_s on the three-boson bound-state spectrum and recombination rate for |a| much greater than |r_s|. We do this by first deriving results appropriate to the strict limit |a| goes to infinity in coordinate space. We then extend these results to finite a using once-subtracted momentum-space integral equations. We also discuss the implications of our results for experiments that probe three-body recombination in Bose-Einstein condensates near a Feshbach resonance.Comment: 28 pages, 3 figure

    The Four-Boson System with Short-Range Interactions

    Get PDF
    We consider the non-relativistic four-boson system with short-range forces and large scattering length in an effective quantum mechanics approach. We construct the effective interaction potential at leading order in the large scattering length and compute the four-body binding energies using the Yakubovsky equations. Cutoff independence of the four-body binding energies does not require the introduction of a four-body force. This suggests that two- and three-body interactions are sufficient to renormalize the four-body system. We apply the equations to 4He atoms and calculate the binding energy of the 4He tetramer. We observe a correlation between the trimer and tetramer binding energies similar to the Tjon line in nuclear physics. Over the range of binding energies relevant to 4He atoms, the correlation is approximately linear.Comment: 23 pages, revtex4, 5 PS figures, discussion expanded, results unchange

    Production of three-body Efimov molecules in an optical lattice

    Full text link
    We study the possibility of associating meta-stable Efimov trimers from three free Bose atoms in a tight trap realised, for instance, via an optical lattice site or a microchip. The suggested scheme for the production of these molecules is based on magnetically tunable Feshbach resonances and takes advantage of the Efimov effect in three-body energy spectra. Our predictions on the energy levels and wave functions of three pairwise interacting 85Rb atoms rely upon exact solutions of the Faddeev equations and include the tightly confining potential of an isotropic harmonic atom trap. The magnetic field dependence of these energy levels indicates that it is the lowest energetic Efimov trimer state that can be associated in an adiabatic sweep of the field strength. We show that the binding energies and spatial extents of the trimer molecules produced are comparable, in their magnitudes, to those of the associated diatomic Feshbach molecule. The three-body molecular state follows Efimov's scenario when the pairwise attraction of the atoms is strengthened by tuning the magnetic field strength.Comment: 21 pages, 8 figures (final version

    Few-body physics in effective field theory

    Full text link
    Effective Field Theory (EFT) provides a powerful framework that exploits a separation of scales in physical systems to perform systematically improvable, model-independent calculations. Particularly interesting are few-body systems with short-range interactions and large two-body scattering length. Such systems display remarkable universal features. In systems with more than two particles, a three-body force with limit cycle behavior is required for consistent renormalization already at leading order. We will review this EFT and some of its applications in the physics of cold atoms and nuclear physics. In particular, we will discuss the possibility of an infrared limit cycle in QCD. Recent extensions of the EFT approach to the four-body system and N-boson droplets in two spatial dimensions will also be addressed.Comment: 10 pages, 5 figures, Proceedings of the INT Workshop on "Nuclear Forces and the Quantum Many-Body Problem", Oct. 200

    Collective Excitations of Strongly Interacting Fermi Gases of Atoms in a Harmonic Trap

    Get PDF
    The zero-temperature properties of a dilute two-component Fermi gas in the BCS-BEC crossover are investigated. On the basis of a generalization of the Hylleraas-Undheim method, we construct rigorous upper bounds to the collective frequencies for the radial and the axial breathing mode of the Fermi gas under harmonic confinement in the framework of the hydrodynamic theory. The bounds are compared to experimental data for trapped vapors of Li6 atoms.Comment: 11 pages, 2 figure

    On the correlation between the binding energies of the triton and the alpha-particle

    Full text link
    We consider the correlation between the binding energies of the triton and the alpha-particle which is empirically observed in calculations employing different phenomenological nucleon-nucleon interactions. Using an effective quantum mechanics approach for short-range interactions with large scattering length |a| >> l, where l is the natural low-energy length scale, we construct the effective interaction potential at leading order in l/|a|. In order to renormalize the four-nucleon system, it is sufficient to include a SU(4)-symmetric one-parameter three-nucleon interaction in addition to the S-wave nucleon-nucleon interactions. The absence of a four-nucleon force at this order explains the empirically observed correlation between the binding energies of the triton and the alpha-particle. We calculate this correlation and obtain a prediction for the alpha-particle binding energy. Corrections to our results are suppressed by l/|a|.Comment: 4 pages, 1 ps figure, references update

    Light baryon magnetic moments and N -> Delta gamma transition in a Lorentz covariant chiral quark approach

    Get PDF
    We calculate magnetic moments of light baryons and N -> Delta gamma transition characteristics using a manifestly Lorentz covariant chiral quark approach for the study of baryons as bound states of constituent quarks dressed by a cloud of pseudoscalar mesons.Comment: 29 pages, 10 figures, accepted for publication in Phys. Rev.

    Three body problem in a dilute Bose-Einstein condensate

    Get PDF
    We derive the explicit three body contact potential for a dilute condensed Bose gas from microscopic theory. The three body coupling constant exhibits the general form predicted by T.T. Wu [Phys. Rev. 113, 1390 (1959)] and is determined in terms of the amplitudes of two and three body collisions in vacuum. In the present form the coupling constant becomes accessible to quantitative studies which should provide the crucial link between few body collisions and the stability of condensates with attractive two body forces
    • …
    corecore