6 research outputs found

    Mitochondria in epithelial ovarian carcinoma exhibit abnormal phenotypes and blunted associations with biobehavioral factors

    Get PDF
    Malignant tumor cells exhibit mitochondrial alterations and are also influenced by biobehavioral processes, but the intersection of biobehavioral factors and mitochondria in malignant tumors remains unexplored. Here we examined multiple biochemical and molecular markers of mitochondrial content and function in benign tissue and in high-grade epithelial ovarian carcinoma (EOC) in parallel with exploratory analyses of biobehavioral factors. First, analysis of a publicly-available database (n = 1435) showed that gene expression of specific mitochondrial proteins in EOC is associated with survival. Quantifying multiple biochemical and molecular markers of mitochondrial content and function in tissue from 51 patients with benign ovarian masses and 128 patients with high-grade EOC revealed that compared to benign tissue, EOCs exhibit 3.3–8.4-fold higher mitochondrial content and respiratory chain enzymatic activities (P < 0.001) but similar mitochondrial DNA (mtDNA) levels (− 3.1%), documenting abnormal mitochondrial phenotypes in EOC. Mitochondrial respiratory chain activity was also associated with interleukin-6 (IL-6) levels in ascites. In benign tissue, negative biobehavioral factors were inversely correlated with mitochondrial content and respiratory chain activities, whereas positive biobehavioral factors tended to be positively correlated with mitochondrial measures, although effect sizes were small to medium (r = − 0.43 to 0.47). In contrast, serous EOCs showed less pronounced biobehavioral-mitochondrial correlations. These results document abnormal mitochondrial functional phenotypes in EOC and warrant further research on the link between biobehavioral factors and mitochondria in cancer

    _

    No full text
    ABSTRACT Over the past decade, numerous reports have underscored the similarities between the metabolism of Drosophila and vertebrates, with the identification of evolutionarily conserved enzymes and analogous organs that regulate carbohydrate and lipid metabolism. It is now well established that the major metabolic, energy-sensing and endocrine signaling networks of vertebrate systems are also conserved in flies. Accordingly, studies in Drosophila are beginning to unravel how perturbed energy balance impinges on lifespan and on the ensuing diseases when energy homeostasis goes awry. Here, we highlight several emerging concepts that are at the nexus between obesity, nutrient sensing, metabolic homeostasis and aging. Specifically, we summarize the endocrine mechanisms that regulate carbohydrate and lipid metabolism, and provide an overview of the neuropeptides that regulate feeding behavior. We further describe the various efforts at modeling the effects of high-fat or -sugar diets in Drosophila and the signaling mechanisms involved in integrating organ function. Finally, we draw attention to some of the cardinal discoveries made with these disease models and how these could spur new research questions in vertebrate systems

    Reactive oxygen species prime Drosophila haematopoietic progenitors for differentiation

    No full text
    Reactive Oxygen Species (ROS), produced during various electron transfer reactions in vivo are generally considered to be deleterious to cells1. In the mammalian haematopoietic system, haematopoietic stem cells (HSCs) contain low ROS levels, but unexpectedly, the common myeloid progenitors (CMPs), produce significantly elevated levels of ROS2. The functional significance of this difference in ROS level in the two progenitor types remains unresolved2,3. Here, we show that Drosophila multipotent haematopoietic progenitors which are largely akin to the mammalian myeloid progenitors4 display elevated levels of ROS under in vivo physiological conditions, which is downregulated upon differentiation. Scavenging the ROS from these haematopoietic progenitors using in vivo genetic tools, retards their differentiation into mature blood cells. Conversely, increasing the haematopoietic progenitor ROS beyond their basal level triggers precocious differentiation into all three mature blood cell types found in Drosophila, through a signaling pathway that involves JNK and FoxO activation as well as Polycomb downregulation. We conclude that the developmentally regulated, moderately high ROS level in the progenitor population sensitizes them to differentiation, and establishes a signaling role for ROS in the regulation of haematopoietic cell fate. Our results lead to a model that could be extended to reveal a probable signaling role for ROS in the differentiation of CMPs in mammalian haematopoietic development and oxidative stress response
    corecore