583 research outputs found

    A Decoupled 3D Facial Shape Model by Adversarial Training

    Get PDF
    Data-driven generative 3D face models are used to compactly encode facial shape data into meaningful parametric representations. A desirable property of these models is their ability to effectively decouple natural sources of variation, in particular identity and expression. While factorized representations have been proposed for that purpose, they are still limited in the variability they can capture and may present modeling artifacts when applied to tasks such as expression transfer. In this work, we explore a new direction with Generative Adversarial Networks and show that they contribute to better face modeling performances, especially in decoupling natural factors, while also achieving more diverse samples. To train the model we introduce a novel architecture that combines a 3D generator with a 2D discriminator that leverages conventional CNNs, where the two components are bridged by a geometry mapping layer. We further present a training scheme, based on auxiliary classifiers, to explicitly disentangle identity and expression attributes. Through quantitative and qualitative results on standard face datasets, we illustrate the benefits of our model and demonstrate that it outperforms competing state of the art methods in terms of decoupling and diversity.Comment: camera-ready version for ICCV'1

    Video based Animation Synthesis with the Essential Graph

    Get PDF
    International audienceWe propose a method to generate animations using video-based mesh sequences of elementary movements of a shape. New motions that satisfy high-level user-specified constraints are built by recombining and interpolating the frames in the observed mesh sequences. The interest of video based meshes is to provide real full shape information and to enable therefore realistic shape animations. A resulting issue lies, however, in the difficulty to combine and interpolate human poses without a parametric pose model, as with skeleton based animations. To address this issue, our method brings two innovations that contribute at different levels: Locally between two motion sequences, we introduce a new approach to generate realistic transitions using dynamic time warping; More globally, over a set of motion sequences, we propose the essential graph as an efficient structure to encode the most realistic transitions between all pairs of input shape poses. Graph search in the essential graph allows then to generate realistic motions that are optimal with respect to various user-defined constraints. We present both quantitative and qualitative results on various 3D video datasets. They show that our approach compares favourably with previous strategies in this field that use the motion graph

    Progressive Shape Models

    Get PDF
    International audienceIn this paper we address the problem of recovering both the topology and the geometry of a deformable shape using temporal mesh sequences. The interest arises in multi-camera applications when unknown natural dynamic scenes are captured. While several approaches allow recovery of shape models from static scenes, few consider dynamic scenes with evolving topology and without prior knowledge. In this nonetheless generic situation, a single time observation is not necessarily enough to infer the correct topology of the observed shape and evidences must be accumulated over time in order to learn this topology and to enable temporally consistent modelling. This appears to be a new problem for which no formal solution exists. We propose a principled approach based on the assumption that the observed objects have a fixed topology. Under this assumption, we can progressively learn the topology meanwhile capturing the deformation of the dynamic scene. The approach has been successfully experimented on several standard 4D datasets and we believe that it paves the way to more general multi-view scene capture and analysis.Dans cet article nous nous concentrons sur un problème récurrent des systèmes d'acquisition 4D : l'apprentissage de la géométrie et de la topologie d'une scène déformable à partir d'une séquence temporelle de maillages. Il s'agit d'une étape fondamentale dans le traitement de scènes naturelles et dynamiques. Tandis que de nombreux travaux ont été menés pour la reconstruction de scènes statiques, assez peu considèrent le cas de scènes dynamiques dont la topologie évolue et sans connaissances \apriori. Dans cette situation, une simple observation à un unique instant de temps n'est souvent pas suffisante pour retrouver entièrement l'information de topologie propre à la scène observée. Il semble ainsi évident que les indices sur la forme doivent être accumulés intelligemment sur une séquence complète afin d'acquerir une information aussi complète que possible sur la topologie de la scène et permettre l'apprentissage d'un modèle cohérent à la fois spatialement et temporellement. A notre connaissance cela semble un problème nouveau pour lequel aucune solution formelle n'a été proposée. Nous formulons dans cette thèse un principe de solution basé sur l'hypothèse que les objets composant la scène observée possèdent une topologie fixe. A partir de cette hypothèse de base nous pouvons progressivement apprendre la topologie et en parallèle capturer les déformations d'une scène dynamique. Les travaux présentés dans cette partie visent à retrouver une information de basse fréquence sur la géométrie de la scène. En l'état actuel, la méthode que nous proposons ne peut pas être directement utilisée pour accumuler les informations de bas niveau (détails de la surface) sur une séquence de maillages

    Shape Animation with Combined Captured and Simulated Dynamics

    Get PDF
    We present a novel volumetric animation generation framework to create new types of animations from raw 3D surface or point cloud sequence of captured real performances. The framework considers as input time incoherent 3D observations of a moving shape, and is thus particularly suitable for the output of performance capture platforms. In our system, a suitable virtual representation of the actor is built from real captures that allows seamless combination and simulation with virtual external forces and objects, in which the original captured actor can be reshaped, disassembled or reassembled from user-specified virtual physics. Instead of using the dominant surface-based geometric representation of the capture, which is less suitable for volumetric effects, our pipeline exploits Centroidal Voronoi tessellation decompositions as unified volumetric representation of the real captured actor, which we show can be used seamlessly as a building block for all processing stages, from capture and tracking to virtual physic simulation. The representation makes no human specific assumption and can be used to capture and re-simulate the actor with props or other moving scenery elements. We demonstrate the potential of this pipeline for virtual reanimation of a real captured event with various unprecedented volumetric visual effects, such as volumetric distortion, erosion, morphing, gravity pull, or collisions

    A Factorization Based Self-Calibration for Radially Symmetric Cameras

    Get PDF
    The paper proposes a novel approach for planar selfcalibration of radially symmetric cameras. We model these camera images using notions of distortion center and concentric distortion circles around it. The rays corresponding to pixels lying on a single distortion circle form a right circular cone. Each of these cones is associated with two unknowns; optical center and focal length (opening angle). In the central case, we consider all distortion circles to have the same optical center, whereas in the non-central case they have different optical centers lying on the same optical axis. Based on this model we provide a factorization based self-calibration algorithm for planar scenes from dense image matches. Our formulation provides a rich set of constraints to validate the correctness of the distortion center. We also propose possible extensions of this algorithm i

    Robust Human Body Shape and Pose Tracking

    Get PDF
    Best paper runner up awardInternational audienceIn this paper we address the problem of markerless human performance capture from multiple camera videos. We consider in particular the recovery of both shape and parametric motion information as often required in applications that produce and manipulate animated 3D contents using multiple videos. To this aim, we propose an approach that jointly estimates skeleton joint positions and surface deformations by fitting a reference surface model to 3D point reconstructions. The approach is based on a probabilistic deformable surface registration framework coupled with a bone binding energy. The former makes soft assignments between the model and the observations while the latter guides the skeleton fitting. The main benefit of this strategy lies in its ability to handle outliers and erroneous observations frequently present in multi view data. For the same purpose, we also introduce a learning based method that partition the point cloud observations into different rigid body parts that further discriminate input data into classes in addition to reducing the complexity of the association between the model and the observations. We argue that such combination of a learning based matching and of a probabilistic fitting framework efficiently handle unreliable observations with fake geometries or missing data and hence, it reduces the need for tedious manual interventions. A thorough evaluation of the method is presented that includes comparisons with related works on most publicly available multi-view datasets

    On Volumetric Shape Reconstruction from Implicit Forms

    Get PDF
    International audienceIn this paper we report on the evaluation of volumetric shape reconstruction methods that consider as input implicit forms in 3D. Many visual applications build implicit representations of shapes that are converted into explicit shape representations using geometric tools such as the Marching Cubes algorithm. This is the case with image based reconstructions that produce point clouds from which implicit functions are computed, with for instance a Poisson reconstruction approach. While the Marching Cubes method is a versatile solution with proven efficiency, alternative solutions exist with different and complementary properties that are of interest for shape modeling. In this paper, we propose a novel strategy that builds on Centroidal Voronoi Tessellations (CVTs). These tessellations provide volumetric and surface representations with strong regularities in addition to provably more accurate approximations of the implicit forms considered. In order to compare the existing strategies, we present an extensive evaluation that analyzes various properties of the main strategies for implicit to explicit volumetric conversions: Marching cubes, Delaunay refinement and CVTs, including accuracy and shape quality of the resulting shape mesh

    3D Shape Cropping

    Get PDF
    International audienceWe introduce shape cropping as the segmentation of a bounding geometry of an object as observed by sensors with different modalities. Segmenting a bounding volume is a preliminary step in many multi-view vision applications that consider or require the recovery of 3D information, in particular in multi-camera environments. Recent vision systems used to acquire such information often combine sensors of different types, usually color and depth sensors. Given depth and color images we present an efficient geometric algorithm to compute a polyhedral bounding sur- face that delimits the region in space where the object lies. The resulting cropped geometry eliminates unwanted space regions and enables the initialization of further processes including surface refinements. Our approach ex- ploits the fact that such a region can be defined as the intersection of 3D regions identified as non empty in color or depth images. To this purpose, we propose a novel polyhedron combination algorithm that overcomes compu- tational and robustness issues exhibited by traditional intersection tools in our context. We show the correction and effectiveness of the approach on various combination of inputs

    High Resolution 3D Shape Texture from Multiple Videos

    Get PDF
    International audienceWe examine the problem of retrieving high resolution textures of objects observed in multiple videos under small object deformations. In the monocular case, the data redundancy necessary to reconstruct a high-resolution image stems from temporal accumulation. This has been vastly explored and is known as super-resolution. On the other hand, a handful of methods have considered the texture of a static 3D object observed from several cameras, where the data redundancy is obtained through the different viewpoints. We introduce a unified framework to leverage both possibilities for the estimation of a high resolution texture of an object. This framework uniformly deals with any related geometric variability introduced by the acquisition chain or by the evolution over time. To this goal we use 2D warps for all viewpoints and all temporal frames and a linear projection model from texture to image space. Despite its simplicity, the method is able to successfully handle different views over space and time. As shown experimentally, it demonstrates the interest of temporal information that improves the texture quality. Additionally, we also show that our method outperforms state of the art multi-view super-resolution methods that exist for the static case
    • …
    corecore