539 research outputs found

    Refractory metal shielding /insulation/ increases operating range of induction furnace

    Get PDF
    Thermal radiation shield contains escaping heat from an induction furnace. The shield consists of a sheet of refractory metal foil and a loosely packed mat of refractory metal fibers in a concentric pattern. This shielding technique can be used for high temperature ovens, high temperature fluid lines, and chemical reaction vessels

    Diaphragm valve for corrosive and high temperature fluid flow control has unique features

    Get PDF
    Monometallic diaphragm valve is used for corrosive and high temperature fluid flow control. The body, diaphragm, and plug of the valve are welded together to form an integral leakproof unit for containing the fluid as it passes through the valve from inlet to outlet

    Secondary-electron-emission losses in multistage depressed collectors and traveling-wave-tube efficiency improvements with carbon collector electrode surfaces

    Get PDF
    Secondary-electron-emission losses in multistage depressed collectors (MDC's) and their effects on overall traveling-wave-tube (TWT) efficiency were investigated. Two representative TWT's and several computer-modeled MDC's were used. The experimental techniques provide the measurement of both the TWT overall and the collector efficiencies. The TWT-MDC performance was optimized and measured over a wide range of operating conditions, with geometrically identical collectors, which utilized different electrode surface materials. Comparisons of the performance of copper electrodes to that of various forms of carbon, including pyrolytic and iisotropic graphites, were stressed. The results indicate that: (1) a significant improvement in the TWT overall efficiency was obtained in all cases by the use of carbon, rather than copper electrodes, and (2) that the extent of this efficiency enhancement depended on the characteristics of the TWT, the TWT operating point, the MDC design, and collector voltages. Ion textured graphite was found to be particularly effective in minimizing the secondary-electron-emission losses. Experimental and analytical results, however, indicate that it is at least as important to provide a maximum amount of electrostatic suppression of secondary electrons by proper MDC design. Such suppression, which is obtained by ensuring that a substantial suppressing electric field exists over the regions of the electrodes where most of the current is incident, was found to be very effective. Experimental results indicate that, with proper MDC design and the use of electrode surfaces with low secondary-electron yield, degradation of the collector efficiency can be limited to a few percent

    Three-axis electron-beam test facility

    Get PDF
    An electron beam test facility, which consists of a precision multidimensional manipulator built into an ultra-high-vacuum bell jar, was designed, fabricated, and operated at Lewis Research Center. The position within the bell jar of a Faraday cup which samples current in the electron beam under test, is controlled by the manipulator. Three orthogonal axes of motion are controlled by stepping motors driven by digital indexers, and the positions are displayed on electronic totalizers. In the transverse directions, the limits of travel are approximately + or - 2.5 cm from the center with a precision of 2.54 micron (0.0001 in.); in the axial direction, approximately 15.0 cm of travel are permitted with an accuracy of 12.7 micron (0.0005 in.). In addition, two manually operated motions are provided, the pitch and yaw of the Faraday cup with respect to the electron beam can be adjusted to within a few degrees. The current is sensed by pulse transformers and the data are processed by a dual channel box car averager with a digital output. The beam tester can be operated manually or it can be programmed for automated operation. In the automated mode, the beam tester is controlled by a microcomputer (installed at the test site) which communicates with a minicomputer at the central computing facility. The data are recorded and later processed by computer to obtain the desired graphical presentations

    Measurements of complex permittivity of microwave substrates in the 20 to 300 K temperature range from 26.5 to 40.0 GHz

    Get PDF
    A knowledge of the dielectric properties of microwave substrates at low temperatures is useful in the design of superconducting microwave circuits. Results are reported for a study of the complex permittivity of sapphire (Al2O3), magnesium oxide (MgO), silicon oxide (SiO2), lanthanum aluminate (LaAlO3), and zirconium oxide (ZrO2), in the 20 to 300 Kelvin temperature range, at frequencies from 26.5 to 40.0 GHz. The values of the real and imaginary parts of the complex permittivity were obtained from the scattering parameters, which were measured using a HP-8510 automatic network analyzer. For these measurements, the samples were mounted on the cold head of a helium gas closed cycle refrigerator, in a specially designed vacuum chamber. An arrangement of wave guides, with mica windows, was used to connect the cooling system to the network analyzer. A decrease in the value of the real part of the complex permittivity of these substrates, with decreasing temperature, was observed. For MgO and Al2O3, the decrease from room temperature to 20 K was of 7 and 15 percent, respectively. For LaAlO3, it decreased by 14 percent, for ZrO2 by 15 percent, and for SiO2 by 2 percent, in the above mentioned temperature range

    Pseudogap Formation and Heavy Carrier Dynamics in Intermediate Valence YbAl3

    Full text link
    Infrared optical conductivity [σ(ω)\sigma(\omega)] of the intermediate valence compound YbAl3_3 has been measured at temperatures 8 K ≤T≤\leq T \leq 690 K to study its microscopic electronic structures. Despite the highly metallic characters of YbAl3_3, σ(ω)\sigma(\omega) exhibits a clear pseudogap (strong depletion of spectral weight) of about 60 meV below 40 K. It also shows a strong mid-infrared peak centered at ∼\sim 0.25 eV. Energy-dependent effective mass and scattering rate of the carriers obtained from the data indicate the formation of a heavy-mass Fermi liquid state. These characteristic results are discussed in terms of the hybridization states between the Yb 4ff and the conduction electrons. It is argued, in particular, that the pseudogap and the mid-infrared peak result from the indirect and the direct gaps, respectively, within the hybridization state. band.Comment: 4 pages, 4 figures, submitted to J. Phys. Soc. Jp

    Microwave conductivity of laser ablated YBa2Cu3O(7-delta) superconducting films and its relation to microstrip transmission line performance

    Get PDF
    The discovery of high temperature superconductor oxides has raised the possibility of a new class of millimeter and microwave devices operating at temperatures considerably higher than liquid helium temperatures. Therefore, materials properties such as conductivity, current density, and sheet resistance as a function of temperature and frequency, possible anisotropies, moisture absorption, thermal expansion, and others, have to be well characterized and understood. The millimeter wave response of laser ablated YBa2Cu3O(7-delta)/LaAlO3 thin films was studied as a function of temperature and frequency. In particular, the evaluation of their microwave conductivity was emphasized, since knowledge of this parameter provides a basis for the derivation of other relevant properties of these superconducting oxides, and for using them in the fabrication of actual passive circuits. The microwave conductivity for these films was measured at frequencies from 26.5 to 40.0 GHz, in the temperature range from 20 to 300 K. The values of the conductivity are obtained from the millimeter wave power transmitted through the films, using a two fluid model

    A Single-Block TRL Test Fixture for the Cryogenic Characterization of Planar Microwave Components

    Get PDF
    The High-Temperature-Superconductivity (HTS) group of the RF Technology Branch, Space Electronics Division, is actively involved in the fabrication and cryogenic characterization of planar microwave components for space applications. This process requires fast, reliable, and accurate measurement techniques not readily available. A new calibration standard/test fixture that enhances the integrity and reliability of the component characterization process has been developed. The fixture consists of 50 omega thru, reflect, delay, and device under test gold lines etched onto a 254 microns (0.010 in) thick alumina substrate. The Thru-Reflect-Line (TRL) fixture was tested at room temperature using a 30 omega, 7.62 mm (300 mil) long, gold line as a known standard. Good agreement between the experimental data and the data modelled using Sonnet's em(C) software was obtained for both the return (S(sub 11)) and insertion (S( 21)) losses. A gold two-pole bandpass filter with a 7.3 GHz center frequency was used as our Device Under Test (DUT), and the results compared with those obtained using a Short-Open-Load-Thru (SOLT) calibration technique

    Microwave Conductivity of Laser Ablated YBa2Cu3O7-delta Superconducting Films and Its Relation to Microstrip Transmission Line Performance

    Get PDF
    We report on the values of the microwave conductivity in the normal (sigma(subN)) and superconducting (sigma*=sigma(sub1)-j sigma(sub2)) states of two laser ablated YBa2CU3O7(sigma) thin films at 35 GHz, in the temperature range from 20 to 300 K. The films 0.7 and 0.4 micrometers) were deposited on LaA10(sub3) by laser ablation. The conductivity was obtained from the microwave power transmitted through the films and assuming a two-fluid model. Values of sigma(subN) approximately 2.3 X 10(exp5) S/m at room temperature for both films, and of sigma(sub1) approximately 6.3 X 10(exp5) and 4.6 X 10(exp5) S/m at temperatures around 80 K were obtained for the 0.7 and 0.4 micrometer films respectively. For sigma(sub2) values of 4.9 X 10(exp6) and 5.4 X 10(exp6) S/m were obtained for the 0.7 and 0.4 micrometer films at 80 K. The expected conductor losses and Q-factor of a superconducting ring resonator were calculated using these conductivity values. The theoretical values were then compared with the experimental results obtained for a resonator fabricated from one of these films
    • …
    corecore