509 research outputs found
Relationship between post-awakening salivary cortisol and melatonin secretion in healthy participants
We report the relationship between patterns of post-awakening salivary melatonin and cortisol secretion in healthy participants (n=51; mean age 21.6 ±5.0 years). Saliva samples were collected within the domestic setting, at 0-, 15-, 30-, and 45-min post-awakening on 2 consecutive typical weekdays. Analyses were undertaken on data with electronically verified sample timing accuracy (55-min delay between awakening and the start of saliva sampling). Melatonin secretion declined linearly by an average of 29% within the first 45-min post-awakening. In contrast, there was a marked 112% surge in cortisol, characteristic of the cortisol awakening response. No day differences in melatonin or cortisol secretion were observed but melatonin concentrations were lower with later awakening. Despite contrasting post-awakening changes in these hormones, there was a lack of relationship between overall levels or patterns of melatonin and cortisol during this period
Criticality and Bifurcation in the Gravitational Collapse of a Self-Coupled Scalar Field
We examine the gravitational collapse of a non-linear sigma model in
spherical symmetry. There exists a family of continuously self-similar
solutions parameterized by the coupling constant of the theory. These solutions
are calculated together with the critical exponents for black hole formation of
these collapse models. We also find that the sequence of solutions exhibits a
Hopf-type bifurcation as the continuously self-similar solutions become
unstable to perturbations away from self-similarity.Comment: 18 pages; one figure, uuencoded postscript; figure is also available
at http://www.physics.ucsb.edu/people/eric_hirschman
On homothetic cosmological dynamics
We consider the homogeneous and isotropic cosmological fluid dynamics which
is compatible with a homothetic, timelike motion, equivalent to an equation of
state . By splitting the total pressure into the sum of an
equilibrium part and a non-equilibrium part , we find that on
thermodynamical grounds this split is necessarily given by and , corresponding to a dissipative stiff (Zel'dovich) fluid.Comment: 8 pages, to be published in Class. Quantum Gra
Solving the Simplest Theory of Quantum Gravity
We solve what is quite likely the simplest model of quantum gravity, the
worldsheet theory of an infinitely long, free bosonic string in Minkowski
space. Contrary to naive expectations, this theory is non-trivial. We
illustrate this by constructing its exact factorizable S-matrix. Despite its
simplicity, the theory exhibits many of the salient features expected from more
mature quantum gravity models, including the absence of local off-shell
observables, a minimal length, a maximum achievable (Hagedorn) temperature, as
well as (integrable relatives of) black holes. All these properties follow from
the exact S-matrix. We show that the complete finite volume spectrum can be
reconstructed analytically from this S-matrix with the help of the
thermodynamic Bethe Ansatz. We argue that considered as a UV complete
relativistic two-dimensional quantum field theory the model exhibits a new type
of renormalization group flow behavior, "asymptotic fragility". Asymptotically
fragile flows do not originate from a UV fixed point.Comment: 32+4 pages, 1 figure, v2: typos fixed, published versio
Gravitational dipole radiations from binary systems
We investigate the possibility of generating sizeable dipole radiations in
relativistic theories of gravity. Optimal parameters to observe their effects
through the orbital period decay of binary star systems are discussed.
Constraints on gravitational couplings beyond general relativity are derived.Comment: One comment added, accepted for publication in Phys. Rev.
QFT on homothetic Killing twist deformed curved spacetimes
We study the quantum field theory (QFT) of a free, real, massless and
curvature coupled scalar field on self-similar symmetric spacetimes, which are
deformed by an abelian Drinfel'd twist constructed from a Killing and a
homothetic Killing vector field. In contrast to deformations solely by Killing
vector fields, such as the Moyal-Weyl Minkowski spacetime, the equation of
motion and Green's operators are deformed. We show that there is a *-algebra
isomorphism between the QFT on the deformed and the formal power series
extension of the QFT on the undeformed spacetime. We study the convergent
implementation of our deformations for toy-models. For these models it is found
that there is a *-isomorphism between the deformed Weyl algebra and a reduced
undeformed Weyl algebra, where certain strongly localized observables are
excluded. Thus, our models realize the intuitive physical picture that
noncommutative geometry prevents arbitrary localization in spacetime.Comment: 23 pages, no figures; v2: extended discussion of physical
consequences, compatible with version to be published in General Relativity
and Gravitatio
The TIGA technique for detecting gravitational waves with a spherical antenna
We report the results of a theoretical and experimental study of a spherical
gravitational wave antenna. We show that it is possible to understand the data
from a spherical antenna with 6 radial resonant transducers attached to the
surface in the truncated icosahedral arrangement. We find that the errors
associated with small deviations from the ideal case are small compared to
other sources of error, such as a finite signal-to-noise ratio. An in situ
measurement technique is developed along with a general algorithm that
describes a procedure for determining the direction of an external force acting
on the antenna, including the force from a gravitational wave, using a
combination of the transducer responses. The practicality of these techniques
was verified on a room-temperature prototype antenna.Comment: 15 pages, 14 figures, submitted to Physical Review
Collapse of an Instanton
We construct a two parameter family of collapsing solutions to the 4+1
Yang-Mills equations and derive the dynamical law of the collapse. Our
arguments indicate that this family of solutions is stable. The latter fact is
also supported by numerical simulations.Comment: 17 pages, 1 figur
How Black Holes Form in High Energy Collisions
We elucidate how black holes form in trans-Planckian collisions. In the rest
frame of one of the incident particles, the gravitational field of the other,
which is rapidly moving, looks like a gravitational shock wave. The shock wave
focuses the target particle down to a much smaller impact parameter. In turn,
the gravitational field of the target particle captures the projectile when the
resultant impact parameter is smaller than its own Schwarzschild radius,
forming a black hole. One can deduce this by referring to the original argument
of escape velocities exceeding the speed of light, which Michell and Laplace
used to discover the existence of black holes.Comment: 8 pages, 3 .eps figures, essa
Lack of regional pathways impact on surgical delay: Analysis of the Orthopaedic Trauma Hospital Outcomes-Patient Operative Delays (ORTHOPOD) study.
INTRODUCTION: Current practice following injury within the United Kingdom is to receive surgery, at the institution of first contact regardless of ability to provide timely intervention and inconsiderate of neighbouring hospital resource and capacity. This can lead to a mismatch of demand and capacity, delayed surgery and stress within hospital systems, particularly with regards to elective services. We demonstrate through a multicentre, multinational study, the impact of this at scale. METHODOLOGY: ORTHOPOD data collection period was between 22/08/2022 and 16/10/2022 and consisted of two arms. Arm 1 captured orthopaedic trauma caseload and capacity in terms of sessions available per centre and patients awaiting surgery per centre per given week. Arm 2 recorded patient and injury demographics, time of decision making, outpatient and inpatient timeframes as well as time to surgery. Hand and spine cases were excluded. For this regional comparison, regional trauma networks with a minimum of four centres enroled onto the ORTHOPOD study were exclusively analysed. RESULTS: Following analysis of 11,202 patient episodes across 30 hospitals we found no movement of any patient between hospitals to enable prompt surgery. There is no current system to move patients, between regional centres despite clear discrepancies in workload per capacity across the United Kingdom. Many patients wait for days for surgery when simple transfer to a neighbouring hospital (within 10 miles in many instances) would result in prompt care within national guidelines. CONCLUSION: Most trauma patients in the United Kingdom are managed exclusively at the place of first presentation, with no consideration of alternative pathways to local hospitals that may, at that time, offer increased operative capacity and a shorter waiting time. There is no oversight of trauma workload per capacity at neighbouring hospitals within a regional trauma network. This leads to a marked disparity in waiting time to surgery, and subsequently it can be inferred but not proven, poorer patient experience and outcomes. This inevitably leads to a strain on the overall trauma system and across several centres can impact on elective surgery recovery. We propose the consideration of inter-regional network collaboration, aligned with the Major Trauma System
- …