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Abstract: 
 

 
 
 
We report the relationship between patterns of post-awakening salivary melatonin and 

cortisol secretion in healthy participants (n=51; mean age 21.6 ± 5.0 years). Saliva samples 

were collected within the domestic setting, at 0, 15, 30 and 45 min post-awakening on 2 

consecutive typical weekdays. Analyses were undertaken on data with electronically verified 

sample timing accuracy (< 5 min delay between awakening and the start of saliva sampling). 

Melatonin secretion declined linearly by an average of 29% within the first 45 minutes post- 

awakening. In contrast there was a marked 112% surge in cortisol, characteristic of the 

cortisol awakening response. No day-differences in melatonin or cortisol secretion were 

observed but melatonin concentrations were lower with later awakening. Despite contrasting 

post-awakening changes in these hormones there was a lack of relationship between overall 

levels or patterns of melatonin and cortisol during this period. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Introduction 
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Circadian rhythm disruption is a common feature in aging, mental and physical ill-health 

(Jagannath et al., 2013; Karatsoreos, 2012; Wulff et al., 2010), which has led to intense 

investigation of the mechanisms linking circadian function and health (Menet & Rosbash, 

2011; Pezuek et al., 2012). Circadian rhythms exhibit distinct diurnal and nocturnal states 

with an abrupt switch-like transition between sleep and waking; initiating a more gradual 

change in function to prepare for the day ahead: biological dawn (Morris et al., 2012; Wehr 

et al., 2001). Biological dawn is frequently measured by examination of post-awakening 

cortisol secretion, an index of circadian functioning of the HPA axis. Indices include the rise 

in cortisol (cortisol awakening response: CAR) and overall cortisol concentrations (e.g. area 

under the curve with reference to ground: AUCg) in the first 30-45 minutes following morning 

awakening. The CAR is a discrete aspect of the circadian pattern of cortisol secretion (Clow 

et al., 2010) and is believed to play a role in preparation for the day ahead (Adam et al., 

2006; Fries et al., 2009; Stalder et al., 2009). In contrast melatonin, the dominant hormone of 

the night-time neuroendocrine system, is low during the day (Morris et al., 2012). Both 

hormones are regulated by the suprachiasmatic nucleus and are responsive to light; 

melatonin secretion is suppressed and the CAR enhanced (Morris et al, 2013; Scheer and 

Buijs, 1999). Although a relationship between the daily dynamics of salivary cortisol and 

melatonin secretion has been demonstrated (Corbalan-Tutau et al., 2014; Lang et al., 1986) 

a  detailed  examination  of  post-awakening  melatonin  secretion  and  its  relationship  with 

cortisol has not been reported. This is important as if the hormones are related underlying 
 

changes in melatonin may contribute to some of the effects attributed to cortisol. 
 

 
 

The demonstration that melatonin is stable in saliva samples, with a circadian pattern 

reflecting serum (Vakkuri, 1985; Voultsios et al., 1997), together with the introduction of 

commercially available sensitive assay systems enables simultaneous determination of both 

cortisol and melatonin in the same saliva samples.   The aim of the current study was to 
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simultaneously study post-awakening cortisol and melatonin secretion from saliva samples 

on 2 days within the domestic setting in a population of healthy participants. As sample 

timing accuracy is critical for accurate CAR measurement (Smyth et al., 2013; Stalder et al., 

In press) electronic monitoring of awakening and sampling times were employed. Using a 

within-subjects study design it was hypothesised that the fall in melatonin concentrations 

would be related to the increase cortisol concentrations in the immediate post-awakening 

period. 

 

 
 
Methods 

 

 
 
 
Participants 

 
Fifty-one healthy participants (41 females) were recruited from within the academic 

community on the basis they had no diagnosed illness and taking no prescribed medication. 

Ages ranged from 18-39 (21.6 ± 5.0) years. Participants received no financial incentive to 

take part in the study but students received course credit. The University of Westminster 

ethics committee approved the protocol and all participants gave their informed written 

consent. 

 

 
 
Materials 

 

 
 
Participants were provided with full standardised written instructions, a saliva sampling kit 

consisting of two Zipoloc bags labelled Day 1 and Day 2, each containing four coded 

Eppendorf tubes labelled tube 1-4 and a record sheet to record their awakening and saliva 

sampling times. Participants were also provided with wrist-worn activity-recording devices 

(Cambridge Neurotechnology, Cambridge, or Philips Respironics, UK) to monitor awakening 

times. To monitor saliva sampling times the straws used for passive drool into the 

Eppendorf’s were stored in a medication event monitoring (MEM) bottle and participants 
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asked to remove a straw at each specified sampling time and drool saliva into a pre-labeled 

tube. The actiwatch and MEMs devices were used in combination to identify delays between 

verified awakening and sampling times. 

 
 
 
 
Procedure 

 
Participants attended a one-to-one 20-30 minute induction session during which they 

received full instructions on procedures, including use of electronic monitoring devices and 

techniques for collecting and recording times of saliva samples. Participants were instructed 

to collect saliva samples on 2 typical weekdays (Tuesday, Wednesday or Thursday) via 

passive drool (recommended by Salimetrics as necessary for the accurate assessment of 

melatonin from saliva samples), using the Eppendorf tube, immediately on awakening and 

15, 30 and 45 min later. Participants were instructed to awake in their usual way and to 

avoid food and drink (apart from water) or brush their teeth during the sampling period. 

Participants were asked to complete a record sheet with their awakening and saliva 

sampling times. Samples were initially stored in a domestic freezer until returned to the 

laboratory, where they were stored at -20°C until assayed. 

 

 
 
Cortisol and melatonin assessment and assay 

 
Saliva samples were thawed and centrifuged for 10-15 minutes at 3,500 rpm. Cortisol and 

melatonin concentrations were determined in duplicate by enzyme linked immune-sorbent 

assays (Salimetrics LLC, USA). The lower limit of sensitivity for cortisol is <.01638 nnol/l and 

for melatonin 1.8 pg/ml. Intra- and inter-assay variations were below 10% for both hormones. 

 

 
 
Statistical analysis 

 
Hormone concentrations ranged between 2.58 -116.21 pg/mg for melatonin and 0.24-41.82 

nmol/l  for  cortisol.  Data  for  both  hormones  were  both  positively  skewed;  square  root 
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transformations normalised sample distributions. There were 15 days in which either 

actigraph or MEMs data was missing; these were excluded from the analyses. Delays 

between awakening and collection of the first sample greater than 5-minutes were excluded 

from analyses (26 days).  Thus analysis included data, fully verified as accurate, from 61 

days (from 37 participants). Mean (SD) awakening time was 6:44hrs (1.05hrs). 

 

 
 
Mixed regression modelling (MRM) of growth curves was used to examine patterns of 

hormone secretion. First-order autoregressive covariance structure provided optimal data 

modelling. Simple linear effects were investigated in model A, a quadratic term was added in 

model B. Within-person variables, including study day and awakening time and the simple 

interaction of each with sample time were explored in model C. Final models presented here 

involved backward elimination of non-significant effects. 

 

 
 
In further analyses composites of melatonin and cortisol were calculated. Standardized area 

under the curve with respect to ground (AUCg) was computed to estimate total secretion of 

both hormones. For cortisol, the CAR was calculated as the standardized mean increase 

(MnInc) of the second, third  and  fourth samples from  the  first  awakening  sample.  For 

melatonin the standardized mean decrease (MnDec) was calculated as the mean decrease 

from the first sample. The relationships between melatonin and cortisol composites were 

investigated using MRM methods. 

 

 
 
Results 

 

 
 

The results of model A (see Table 1) indicate a linear decline in melatonin over the post- 

awakening period (F = 23.362, df = 193.556, p <0.001). Model B indicated no quadratic 

effect for melatonin (F = 2.812, df = 172.200, p = .095). In model C a significant effect of 

awakening time on melatonin was observed (F = 11.788, df = 228.830, p <0.005) such that 
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later awakening times were associated with lower melatonin. The decline in melatonin is 

illustrated in Figure 1a. There were no day differences in melatonin over the two study days 

and no evidence for modulation of its time course (i.e. no significant interaction) by study day 

or awakening time. 

 

 
 
Insert Table 1 about here 

 

 
 
 
As expected there were both linear (F = 132.740, df = 205.583, p < 0.001) and quadratic (F 

 
= 12.539, df = 180.725, p <0.001) effects for cortisol (See Table 1, models A and B). Cortisol 

showed the typical linear rise followed by a smaller quadratic component. Figure 1b shows 

the linear rise component followed by a quadratic (curvilinear) component reflecting negative 

acceleration towards a peak. There were no day differences in cortisol and no effect of 

awakening time. There were also no significant two-way interactions (modulatory influences) 

of day or awakening time with sample point. 

 

 
 

Insert Figure 1 about here 
 

 
 
 
Modelling indicated that there were no relationships between indices of cortisol and 

melatonin: AUCg (F = 0.112, df =151.993, p = .739) and Mninc/MnDec (F = 0.368; df = 

149.740, p = .546). For total secretion of AUCg, the slope coefficient was -0.046 indicating 

that the amount of total cortisol secretion variance explained by total melatonin secretion (or 

vice versa) is estimated at 0.2%. The equivalent coefficient for MnInc / MnDec was 0.073, 

estimating only 0.5% shared variance. 

 

 
 
Discussion 
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Here we report the relationship between the pattern of post-awakening melatonin and 

cortisol secretion in healthy participants using saliva samples collected within the domestic 

setting. Using data with verified sample timing accuracy melatonin secretion declined by an 

average of 29% within the first 45 minutes post-awakening. Over the same period there was 

a marked 112% surge in cortisol secretion, characteristic of the CAR. Both hormones 

showed consistency across the 2 study days. Further analyses demonstrated a lack of 

relationship between concentrations or patterns of melatonin and cortisol across this period. 

We conclude that post-awakening cortisol and melatonin are discrete and distinctive aspects 

of neuroendocrine function. 

 

 
 
Within the circadian pattern of neuroendocrine function cortisol and melatonin are both 

regulated by the suprachiasmatic nucleus and perform complementary roles as endogenous 

synchronisers with cortisol dominant during daytime activities and melatonin dominant during 

night-time sleep. Further both are affected by bright light (Scheer & Buijs, 1999; Thorn et al., 

2004; Claustrat et al., 2005; Wehr et al., 2001). Despite these complementary mechanisms 

and functions data from this study suggest no direct relationship between the hormones in 

the post awakening period; relationships later in the day were not explored. It may be that 

the complex multi-synaptic pathway from the SCN to the pineal does not lend itself to rapid 

changes in concentration of melatonin. In contrast to melatonin, the more direct route of 

cortisol syntheses via the HPA axis facilitates more rapid responding. Indeed the CAR is 

enhanced by a light-sensitive, extra-pituitary mechanism, involving a direct neural projection 

to the adrenal zona fasiculate that accelerates the rate of cortisol secretion in the post- 

awakening period (Buijs et al., 2003; Clow et al., 2010). 

 

It was interesting to note that secretion of melatonin was consistent across the 2 study days, 

as for cortisol. The within-subject study design presented here did not enable analysis of 

between-subject  differences  in  melatonin,  which  is  something  that  deserves  further 
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exploration. The study did however demonstrate that melatonin secretion was related to 

awakening time with lower melatonin secretion observed with later awakening. This finding is 

consistent with the underlying circadian pattern of declining melatonin secretion from its 

night-time peak (Voultsios et al., 1997). Surprisingly, in contrast to other reports (Edwards et 

al., 2001) cortisol secretion was not associated with awaking time in this study, which may 

be related to the relatively small range of awakening time observed. 

 

 
 
A comparable diurnal rhythm of melatonin in serum and saliva was first demonstrated in 

1985, with (as is found for cortisol) concentrations in saliva being lower than in serum 

(Vakkuri, 1985). It was concluded that salivary melatonin reflects biosynthesis of melatonin 

from the pineal and that such sampling was a simple and non-invasive way of studying 

melatonin in human participants. Further work demonstrated no effect of change in body 

posture or naturalistic saliva flow rate on salivary melatonin levels (Voultsios et al., 1997). 

Like for cortisol, melatonin is known to bind to blood proteins and it is the free, biologically 

active fraction (~30%) that is measured in saliva samples (Vakkuri, 1985; Voultsios et al., 

1997). These studies have authenticated the use of self-collection of saliva in the 

determination of the diurnal pattern of melatonin, as used here. 

 

Strengths of the study include two consecutive study days with four post-awakening samples 

at 15 minute intervals. Electronic monitoring of awakening and sampling times enabled use 

of a strict cut-off criteria for adherence (Smyth et al., 2013; Stalder et al., In Press). However, 

this resulted in a small sample. Further limitations included an unequal number of males and 

females and that seasonal variation in the relationship between the hormones could not be 

explored. We have demonstrated that the best estimates of association between the 

hormones are close to zero (i.e. no relationship) for both total secretion and  dynamic 

change. We conclude that underlying changes in melatonin secretion are unlikely to be 

associated with effects linked to the CAR. 
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