53 research outputs found

    Intracranial tumors of the central nervous system and air pollution - A nationwide case-control study from Denmark

    Get PDF
    Background: Inconclusive evidence has suggested a possible link between air pollution and central nervous system (CNS) tumors. We investigated a range of air pollutants in relation to types of CNS tumors. Methods: We identified all (n = 21,057) intracranial tumors in brain, meninges and cranial nerves diagnosed in Denmark between 1989 and 2014 and matched controls on age, sex and year of birth. We established personal 10- year mean residential outdoor exposure to particulate matter < 2.5 μm (PM2.5), nitrous oxides (NOX), primary emitted black carbon (BC) and ozone. We used conditional logistic regression to calculate odds ratios (OR) linearly (per interquartile range (IQR)) and categorically. We accounted for personal income, employment, marital status, use of medication as well as socio-demographic conditions at area level. Results: Malignant tumors of the intracranial CNS was associated with BC (OR: 1.034, 95%CI: 1.005–1.065 per IQR. For NOx the OR per IQR was 1.026 (95%CI: 0.998–1.056). For malignant non-glioma tumors of the brain we found associations with PM2.5 (OR: 1.267, 95%CI: 1.053–1.524 per IQR), BC (OR: 1.049, 95%CI: 0.996–1.106) and NOx (OR: 1.051, 95% CI: 0.996–1.110). Conclusion: Our results suggest that air pollution is associated with malignant intracranial CNS tumors and malignant non-glioma of the brain. However, additional studies are needed

    Malignant Tumors of the Central Nervous System

    Get PDF
    Malignant tumors of the central nervous system in adults comprise a heterogeneous group of malignancies, the largest subgroups comprising astrocytomas, ependymomas, and oligodendrogliomas. Glioblastomas are the most common tumor type, and they have dismal prognosis. Due to differences in cell type of origin, as well as pathogenesis, it is plausible that their etiology also differs between tumor types. The etiology of malignant CNS tumors is largely unknown and no occupational risk factors have been definitively identified. High doses of ionizing radiation increase the risk, but in occupational settings the dose levels appear too small to result in discernible excesses. Several studies have assessed possible effect of extremely low frequency and radiofrequency electromagnetic fields, but the results are inconsistent. Increased brain tumor risk has been reported in agricultural workers, but no specific exposure has been linked to them. Pesticides have been analyzed in several studies without showing a clear increase in risk.acceptedVersionPeer reviewe

    Microbiome — the 'unforeseen organ'

    No full text
    corecore